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ABSTRACT

In the first part of this work, we study sparse recovery problem in the presence of
bounded noise. We obtain performance guarantees for modified-CS and for its improved
version, modified-CS-Add-LS-Del, for recursive reconstruction of a time sequence of s-
parse signals from a reduced set of noisy measurements available at each time. Under
mild assumptions, we show that the support recovery error and reconstruction error of
both algorithms are bounded by a time-invariant and small value at all times.

In the second part of this work, we study batch sparse recovery problem in the
presence of large and low rank noise, which is also known as the problem of Robust
Principal Components Analysis (RPCA). In recent work, RPCA has been posed as a
problem of recovering a low-rank matrix L and a sparse matrix S from their sum, M :=
L+ S and a provably exact convex optimization solution called PCP has been proposed.
We study the following problem. Assume that we have a partial estimate of the column
space of the low rank matrix L, we propose here a simple but useful modification of
the PCP idea, called modified-PCP, that allows us to use this knowledge. We derive its
correctness result which shows that modified-PCP indeed requires significantly weaker
incoherence assumptions than PCP, when the available subspace knowledge is accurate.

In the third part of this work, we study the “online” sparse recovery problem in
the presence of low rank noise and bounded noise, which is also known as the “online”
RPCA problem. Here we study a more general version of this problem, where the goal
is to recover low rank matrix L and sparse matrix S from M := L+ S + W and W is
the matrix of unstructured small noise. We develop and study a novel “online” RPCA

algorithm based on the recently introduced Recursive Projected Compressive Sensing
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(ReProCS) framework. The key contribution is a correctness result for this algorithm

under relatively mild assumptions.
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CHAPTER 1. INTRODUCTION

The static sparse reconstruction problem has been studied for a while [2, 3, 4, 5, 6].
The papers on compressive sensing (CS) from 2005 [7, 8, 9, 10, 11, 12] (and many other
more recent works) provide the missing theoretical guarantees — conditions for exact
recovery and error bounds when exact recovery is not possible. In more recent works, the
problem of recursively recovering a time sequence of sparse signals, with slowly changing
sparsity patterns has also been studied [13, 1, 14, 15, 16, 17, 18, 19]. By “recursive”
reconstruction, we mean that we want to use only the current measurements’ vector and
the previous reconstructed signal to recover the current signal. This problem occurs
in many applications such as real-time dynamic magnetic resonance imaging (MRI);
single-pixel camera based real-time video imaging; recursively separating the region of
the brain that is activated in response to a stimulus from brain functional MRI (fMRI)
sequences [20] and recursively extracting sparse foregrounds (e.g. moving objects) from
slow-changing (low-dimensional) backgrounds in video sequences [21]. For other potential
applications, see [22, 23].

An important assumption introduced and empirically verified in [13, 1] is that for
many natural signal /image sequences, the sparsity pattern (support set of its projection
into the sparsity basis) changes slowly over time. In [14], the authors exploited this fact to
reformulate the above problem as one of sparse recovery with partially known support and
introduced a solution approach called modified-CS. Given the partial support knowledge
T, modified-CS tries to find a signal that is sparsest outside of 7 among all signals that

satisfy the data constraint. Exact recovery conditions were obtained for modified-CS
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and it was argued that these are weaker than those for simple ¢; minimization (basis
pursuit) under the slow support change assumption. Related ideas for support recovery
with prior knowledge about the support entries, that appeared in parallel, include [24],
[25]. All of [14], [24] and [25] studied the noise-free measurements’ case. Later work
includes [26, 27].

Error bounds for modified-CS for noisy measurements were obtained in [28], [29], [30].
When modified-CS is used for recursive reconstruction, these bounds tell us that the
reconstruction error bound at the current time is proportional to the support recovery
error (misses and extras in the support estimate) from the previous time. Unless we
impose extra conditions, this support error can keep increasing over time, in which case
the bound is not useful. Thus, for recursive reconstruction, the important question is,
under what conditions can we obtain time-invariant bounds on the support error (which
will, in turn, imply time-invariant bounds on the reconstruction error)? In other words,
when can we ensure “stability” over time? Notice that, even if we did nothing, i.e. we
set x; = 0, the support error will be bounded by the support size. If the support size
is bounded, then this is a naive stability result too, but is not useful. Here, we look for
results in which the support error bound is small compared to the support size.

Stability over time has not been studied much for recursive recovery of sparse signal
sequences. To the best of our knowledge, it has only been addressed in [1], and in
very recent work [19]. The result of [19] is for exact dynamic support recovery in the
noise-free case and it studies a different problem: the MMV version of the recursive
recovery problem. The result from [1] for Least Squares CS-residual (LS-CS) stability)
holds under mostly mild assumptions; its one limitation is that it assumes that support
changes occur every p frames. But from testing the slow support change assumption for
real data (medical image sequences), it has been observed that support changes usually
occur at every time, e.g. Fig. 1.1. This tmportant case is the focus of current work. We

explain the differences of our results w.r.t. the LS-CS result in detail later in Sec 2.5.5.
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Principal Components Analysis (PCA) is a widely used dimension reduction tech-
nique that finds a small number of orthogonal basis vectors, called principal components
(PCs), along which most of the variability of the dataset lies. Accurately computing
the PCs in the presence of outliers is called robust PCA. Outlier is a loosely defined
term that refers to any corruption that is not small compared to the true data vector
and that occurs occasionally. As suggested in [31], an outlier can be nicely modeled as
a sparse vector. The robust PCA problem occurs in various applications ranging from
video analysis to recommender system design in the presence of outliers, e.g. for Netflix
movies, to anomaly detection in dynamic networks [32]. In video analysis, background
image sequences are well modeled as forming a low-rank but dense matrix because they
change slowly over time and the changes are typically global. Foreground is a sparse
image consisting of one or more moving objects. In recent work, Candes et al and Chan-
drasekharan et al [32, 33] posed the robust PCA problem as one of separating a low-rank
matrix L (true data matrix) and a sparse matrix S (outliers’ matrix) from their sum,
M = L + S. They showed that by solving the following convex optimization called

principal components’ pursuit (PCP)

minimizey, g ||£||*+A||§||1 1)
subject to L+S=M

it is possible to recover L and S exactly with high probability under mild assumptions.
This was among the first recovery guarantees for a practical (polynomial complexity)
robust PCA algorithm. Since then, the batch robust PCA problem, or what is now also
often called the sparse+low-rank recovery problem, has been studied extensively, e.g. see
[34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

In this work, we introduce modified-CS-add-LS-del which is a modified-CS based
algorithm for recursive recovery with an improved support estimation step and we explain

how to set its parameters in practice. The main contribution of this work is to obtain

conditions forstability.efmodified-CS and modified-CS-add-LS-del for recursive recovery
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of a time sequence of sparse signals. Under mild assumptions, we show that the support
recovery error and the reconstruction error of both algorithms is bounded by a time-
invariant value at all times. The support error bound is proportional to the maximum
allowed support change size. Under slow support change, this bound is small compared
to the support size, making our result meaningful. Similar arguments can be made for
the reconstruction error also. The assumptions we need are: weaker restricted isometry
property (RIP) conditions [10] on the measurement matrix than what ¢; minimization for
noisy data (henceforth referred to as noisy ¢;) needs; bounded cardinality of the support
and support change; all but a small number of existing nonzero entries are above a
threshold in magnitude; appropriately set support estimation thresholds; and a special
start condition. Here and elsewhere in the paper noisy ¢; (or simple CS) refers to the
solution of (2.1).

A second main contribution of this work is to show two examples of signal change
assumptions under which the required conditions hold and prove stability results for
these. The first case is a simple signal change model that helps to illustrate the key ideas
and allows for easy comparison of the results. The second set of assumptions is realistic,
but more complicated to state. We use MRI image sequences to demonstrate that these
assumptions are indeed valid for real data. The essential requirement in both cases is
that, for any new element that is added to the support, either its initial magnitude is
large enough, or for the first few time instants, its magnitude increases at a large enough
rate; and a similar assumption for magnitude decrease and removal from the support.

Let S be the bound on the maximum support size and .S, the bound on the maximum
number of support additions or removals. All our results require s-RIP to hold with
s =8+ kS, where k is a constant. On the other hand, noisy ¢; needs s-RIP for s = 25
[12] which is a stronger requirement when S, < S (slow support change).

In the second part we study the following problem. Suppose that we have a partial

estimate of the column space of the low rank matrix L. How can we use this information
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Figure 1.1: Slow support change in medical image sequences. We used the two-level
Daubechies-4 2D discrete wavelet transform (DWT) as the sparsity basis. Since real image
sequences are only approximately sparse, we use Ny to denote the 99%-energy support of the
DWT of these sequences. The support size, | Ny|, was 6-7% of the image size for both sequences.
We plot the number of additions (left) and the number of removals (right) as a fraction of | N¢|.
Notice that all changes are less than 2% of the support size.

to improve the PCP solution, i.e. allow recovery under weaker assumptions? We propose
here a simple but useful modification of the PCP idea, called modified-PCP, that allows
us to use this knowledge. We derive its correctness result (Theorem 3.1.1) that provides
explicit bounds on the various constants and on the matrix size that are needed to
ensure exact recovery with high probability. Our result is used to argue that modified-
PCP indeed requires significantly weaker incoherence assumptions than PCP, as long as
the available subspace knowledge is accurate. To prove the result, we use the overall
proof approach of [32] with some changes (see Sec 3.3).

An important problem where partial subspace knowledge is available is in online or
recursive robust PCA for sequentially arriving time series data, e.g. for video based
foreground and background separation. In this case, as explained in [44], the subspace
spanned by a set of consecutive columns of L does not remain fixed, but instead changes
over time and the changes are gradual. Also, often an initial short sequence of low-rank
only data (without outliers) is available, e.g. in video analysis, it is easy to get an initial
background-only sequence. For this application, modified-PCP can be used to design a
piecewise batch solution that will be faster and will require weaker assumptions for exact
recovery than PCP. This is made precise in Corollary 3.2.1 and the discussion below it.

We show extensive simulation comparisons and some real data comparisons of modified-

PCP with PCP and with other existing robust PCA solutions from literature. The im-
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plementation requires a fast algorithm for solving the modified-PCP program. This is
developed by modifying the Inexact Augmented Lagrange Multiplier Method [45] and
using the idea of [46, 47] for the sparse recovery step. The real data comparisons are for
a face reconstruction / recognition application in the presence of outliers, e.g. eye-glasses
or occlusions, that is also discussed in [32].

When RPCA needs to be solved in a recursive fashion for sequentially arriving data
vectors it is referred to as online RPCA. Our “online” RPCA formulation assumes that
(i) a short sequence of outlier-free (sparse component free) data vectors is available or
that there is another way to get an estimate of the initial subspace of the true data
(without outliers); and that (ii) the subspace from which £; is generated is fixed or
changes slowly over time. We put “online” in quotes here to stress that our problem
formulation uses extra assumptions beyond what are used by RPCA (or batch RPCA).
A key application of RPCA is the problem of separating a video sequence into foreground
and background layers [32]. Video layering is a key first step to simplifying many video
analytics and computer vision tasks, e.g., video surveillance (to track moving foreground
objects), background video recovery and subspace tracking in the presence of frequent
foreground occlusions or low-bandwidth mobile video chats or video conferencing (can
transmit only the foreground layer). In videos, the foreground typically consists of one or
more moving persons or objects and hence is a sparse image. The background images (in
a static camera video) usually change only gradually over time, e.g., moving lake waters
or moving trees in a forest, and the changes are global [32]. Hence they are well modeled
as being dense and lying in a low-dimensional subspace that is fixed or slowly changing.
Other applications where RPCA occurs include recommendation system design, survey
data analysis, anomaly detection in dynamic social (or computer) networks [32] and

dynamic magnetic resonance imaging (MRI) based region-of-interest tracking [48].
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1.1 Notation and Problem Definition

1.1.1 Notation

We use bold lowercase for vectors, bold uppercase for matrices, calligraphic uppercase
for sets or corresponding linear space.

We let [1,m] :=[1,2,...m]. We let () denote an empty set. We use 7° to denote the
complement of a set T w.r.t. [1,m],i.e. T¢:={i €[l,m]:i¢ T} We use |T| to denote
the cardinality of 7. The set operations U, N, \ have their usual meanings (recall that
A\ B := AN B°). If two sets B, C are disjoint, we just write DU B\ C instead of writing
(DuB)\C.

For a vector, x, and a set, 7, x7 denotes the |T| length sub-vector containing the
elements of x corresponding to the indices in the set 7. ||x||; denotes the ¢; norm of
a vector x. If just ||x| is used, it refers to ||x||. Similarly, for a matrix M, ||M]|,
denotes its induced k-norm, while just |[M]| refers to |[M]|s. M’ denotes the transpose
of M and M denotes the Moore-Penrose pseudo-inverse of M (when M is full column
rank, M := (M'M)~'M’). Also, M7 denotes the sub-matrix obtained by extracting
the columns of M corresponding to indices in 7.

We refer to the left (right) hand side of an equation or inequality as LHS (RHS).

For a matrix X, we denote by X* the transpose of X; denote by ||X]|~ the {5 norm
of X reshaped as a long vector, i.e., max; ; | X;;|; denote by || X|| the operator norm or
2-norm; denote by ||X||r the Frobenius norm; denote by ||X||. the nuclear norm; denote
by || X1 the ¢; norm of X reshaped as a long vector.

Let Py denote the identity operator, i.e., Pr(Y) = Y for any matrix Y. Let ||P4||
denote the operator norm of operator P4, i.e., |[Pall = supgx),=1} [PaX||F; let (X,Y)
denote the Euclidean inner product between two matrices, i.e., trace(X*Y); let sgn(X)
denote the entrywise sign of X. We let Pg denote the orthogonal projection onto linear

subspace ©. We use 2 to denote the support set of matrix S, i.e., Q@ = {(4,7) : S(¢,7) #
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0}. We also use Q2 to denote the subspace spanned by all matrices supported on €.
By © ~ Ber(p) we mean that any matrix index (7, j) has probability p of being in the
support independent of all others.

Given two matrices B and B,, [B Bs] constructs a new matrix by concatenating
matrices B and By in the horizontal direction. Let B,., be a matrix containing some
columns of B. Then B \ B, is the matrix B with columns in B, removed.

We say that U is a basis matriz if U*U = I where I is the identity matrix. We use
e; to refer to the i*” column I.

We use the interval notation [a, b] to mean all of the integers between a and b, inclu-
sive, and similarly for [a,b) etc. For a set T, |T| denotes its cardinality and T denotes
its complement set. We use () to denote the empty set. For a vector x, x7 is a smaller
vector containing the entries of x indexed by 7. Define I to be an n x |7 | matrix of
those columns of the identity matrix indexed by 7. For a matrix A, define Ay := Al.
We use ' to denote transpose. The [,-norm of a vector and the induced [,-norm of a
matrix are denoted by || - ||,. We refer to a matrix with orthonormal columns as a basis
matriz. Thus, for a basis matrix P, P’P = I. For matrices P, Q where the columns of
Q are a subset of the columns of P, P\ Q refers to the matrix of columns in P and not
in Q. For a matrix H, H "YP UAU’ denotes its reduced eigenvalue decomposition. For
a matrix A, the restricted isometry constant (RIC) d5(A) is the smallest real number
such that

(1= ds)lxllz < [Ax]lz < (1 +0)1x|l2

for all s-sparse vectors x [12]. A vector x is s-sparse if it has s or fewer non-zero entries.
For Hermitian matrices A and B, the notation A < B means that B — A is positive
semi-definite. For basis matrices P and P, dif(P,P) := ||(I — PP")P||, quantifies error

between their range spaces.
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1.1.2 Problem definition

The first type of problems that we study here are as following. We assume the

following observation model:
ye=Ax, +wy, [[wi <e (1.2)

where x; is an m length sparse vector with support set Ny, i.e. Ny :={i: (x;); # 0}; Ay
is a n; X m measurement matrix; y; is the n; length observation vector at time ¢ (with
ny < m); and w; is the observation noise. For t > 0, we fix n; = n.

Our goal is to recursively estimate x; using yi,...y;. By recursively, we mean, use

only y; and the estimate from ¢ — 1, X;_1, to compute the estimate at ¢.

Remark 1.1.1 (Why bounded noise). All results for bounding ¢, minimization error
in noise, and hence all results for bounding modified-CS error in noise, either assume
a deterministic noise bound and then bound ||x — x||, e.g., [12], [49], [28, 50], [51]; or
assume unbounded, e.g. Gaussian, noise and then bound ||x—x|| with “large” probability,
e.g. [52], [53, Sec IV], [1, Section III-A], [51]. The latter approach is not useful for
recovering a time sequence of sparse signals because the error bound will hold for all
times 0 < t < oo with probability zero.

One way to get a meaningful error stability result with unbounded, e.g. Gaussian
noise, is to compute or bound the expected value of the error at each time, i.e. compute
E[(%x; — x¢)(X¢ — %¢)'] or bound some norm of it. This is possible to do, for example, for a
Kalman filter applied to a linear system model with additive Gaussian noise; and hence
in that case, one can assume Gaussian noise and still get a time-invariant bound on the
expected value of the error under mild assumptions. However, for {1 minimization based
methods, such as modified-CS, there is no easy way to compute or bound the expected
value of the error. Moreover, even if one could do this for a given time, it would not tell
us anything about the support recovery error (for the given noise sequence realization)

aidghencewould-notbesuscful for analyzing modified-CS.
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As a sidenote, we should point out that, in most applications, the noise is typically
bounded (because of finite sensing power available). One often chooses to model the noise

as Gaussian because it simplifies performance analysis.

The second type of problems that we study here are as following. We are given a

data matrix M € R™*"2 that satisfies
M=L+S (1.3)

where S is a sparse matrix with support set €2 and L is a low rank matrix with rank r

and with reduced singular value decomposition (SVD)
L=UX»V" (1.4)

We assume that we are given an n; X rg basis matrix G so that (I — GG*)L has rank
smaller than r. The goal is to recover L and S from M using G.

We explain the above a little more. With G as above, U can be rewritten as

U = [(GR \ Uextra) Unew]a (15)

Uyg

where U, € R"*™ev and U*

rowG = 0; R is a rotation matrix and Uy contains regira

columns of GR.. Let ry be the number of columns in Uy. Then, clearly, rg = rq — Textra
and 7 = 1y + Tpew-
We use V., to denote the right singular vectors of the reduced SVD of Lye, =

(I- GG*)L = U, U,

new

L. In other words,

Liew := (I = GG*)L *Y Upey S Vi (1.6)
From the above model, it is clear that
L.w +GX*"+S =M (1.7)
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for X = L*G. We propose to recover L and S using G by solving the following Modified
PCP (mod-PCP) program

minimizer & % INJH wlls £ A S
Loew 8.X Il ew |l N I ||~1 (18
subject to Liw +GX*+S =M

Denote a solution to the above by ﬂneW,S,X. Then, L is recovered as L = f,new +
GX*. Modified-PCP is inspired by an approach for sparse recovery using partial support
knowledge called modified-CS [54].

The third type of problems that we study here are as following. At time ¢ we observe

a data vector m; € R" that satisfies
m; = et + X + Wi, for t = ttrain + 17 ttrain + 27 tee 7tmax- (19)

For t = 1,2,... tiyam, X¢ = 0, i.e., my = £; + w;. Here #; is a vector that lies in a
low-dimensional subspace that is fixed or slowly changing in such a way that the matrix
L; :=[£1,€,...,4] is a low-rank matrix for all but very small values of ¢; x; is a sparse
(outlier) vector; and w; is small modeling error or noise. We use 7; to denote the
support set of x; and we use P, to denote a basis matrix for the subspace from which £;
is generated. For t > t;,.i,, the goal of online RPCA is to recursively estimate £; and its
subspace range(P;), and x; and its support, 7;, as soon as a new data vector m; arrives
or within a short delay !. Sometimes, e.g., in video analytics, it is often also desirable
to get an improved offline estimate of x; and £; when possible. We show that this is an
easy by-product of our solution approach.

The initial ¢i,;, outlier-free measurements are used to get an accurate estimate of the
initial subspace via PCA. For video surveillance, this assumption corresponds to having
a short initial sequence of background only images, which can often be obtained.

In many applications, it is actually the sparse outlier x; that is the quantity of interest.

The above problem can thus also be interpreted as one of online sparse matriz recovery

!By definition, a subspace of dimension 7 > 1 cannot be estimated immediately since it needs at
least r data points to estimate
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in large but structured noise £, and unstructured small noise w;. The unstructured noise,
w;, often models the modeling error. For example, when some of the corruptions/outliers
are small enough to not significantly increase the subspace recovery error, these can be
included into w, rather than x;. Another example is when the £,’s form an approximately

low-rank matrix.

1.2 Dissertation Organization

The dissertation is organized as follows. Recursive sparse recovery in bounded noise
and corresponding results are introduced in Chapter 2. Batch sparse recovery in large
and structured noise and corresponding results are discussed in Chapter 3. Recursive
(online) sparse recovery in large and structured noise and bounded noise and correspond

results are demonstrated in Chapter 4. Finally, conclusions are summarized in Chapter

D.
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CHAPTER 2. RECURSIVE SPARSE RECOVERY IN
BOUNDED NOISE

2.1 Related Work And Organization

“Recursive sparse reconstruction” also sometimes refers to homotopy methods, e.g.
[55], whose goal is to use the past reconstructions and homotopy to speed up the current
optimization, but not to achieve accurate recovery from fewer measurements than what
noisy ¢; needs. The goals in the above works are quite different from ours.

Iterative support estimation approaches (using the recovered support from the first
iteration for a second weighted ¢; step and doing this iteratively) have been studied in
recent work [56, 57, 58, 59]. This is done for iteratively improving the recovery of a single
signal.

This chapter is organized as follows. The algorithms — modified-CS and modified-
CS-add-LS-del — are introduced in Sec 2.2. This section also includes definitions for
certain quantities and sets used later in the paper. In Sec 2.3, we provide stability
results for modified-CS and modified-CS-add-LS-del that do not assume anything about
signal change over time except a bound on the number of small magnitude nonzero
coefficients and a bound on maximum number of support additions or removals per unit
time. In Sec 2.4, we give a simple set of signal change assumptions and give stability
results for both algorithms under these and other simple assumptions. In Sec 2.5, we
do the same for a realistic signal change model. The results are discussed in Sec 2.4.4

and 2.5.4 respectively. In Sec 2.6, we demonstrate that the signal model assumptions of
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Sec 2.5 are indeed valid for medical imaging data. In Sec 4.4, we explain how to set the
algorithm parameters automatically for both modified-CS and modified-CS-add-LS-del.
In this section, we also give simulation experiments that back up some of our discussions

from earlier sections.

2.2 Modified-CS And Modified-CS-add-LS-del For Recursive

Reconstruction

2.2.1 Modified-CS

Modified-CS was first proposed in [14] as a solution to the problem of sparse recon-
struction with partial, and possibly erroneous, knowledge of the support. Denote this
“known” support by 7. Modified-CS tries to find a signal that is sparsest outside of
the set 7 among all signals satisfying the data constraint. In the noisy case, it solves
ming || (8)7<|l1 s.t. ||ly: — AB|| < e. For recursively reconstructing a time sequence of
sparse signals, we use the support estimate from the previous time, M,l, as the set T.
The simplest way to estimate the support is by thresholding the output of modified-CS.
We summarize the complete algorithm in Algorithm 1.

At the initial time, ¢t = 0, we let 7 be the empty set, (), i.e. we solve noisy ¢;.
Alternatively, as explained in [14], we can use prior knowledge of the initial signal’s
support as the set T at t = 0, e.g. for wavelet sparse images with no (or a small) black
background, the set of indices of the approximation coefficients can form the set 7. This
prior knowledge is usually not as accurate.

We explain how the parameter oo can be set in practice in Sec 2.7.1.

2.2.2 Limitation: biased solution

Modified-CS uses single step thresholding for estimating the support A;. The thresh-

old, a, needs to be large enough to ensure that all (or most) removed elements are
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Algorithm 1 Modified-CS
For t > 0, do

1. Noisy t;. Ift =0, set T; = () and compute X modes as the solution of

min ()1 5. [lyo — Aof] < e (2.1)

2. Modified-CS. If t > 0, set T; = M_l and compute X¢ modes as the solution of

min |(8) s

18t |lye — A8 < e (2.2)

3. Estimate the Support. Compute T; as

Ti={ie[l,m]: |(Xtmodes )i| > a} (2.3)

4. Set /\7} = 7~Z Output X; modes- Feedback /\A/;

correctly deleted and there are no (or very few) false detections. But this means that
the new additions to the support set will either have to be added at a large value, or
their magnitude will need to increase to a large value quickly enough to ensure correct
detection within a small delay. This issue is further exaggerated by the fact that X; modes

is a biased estimate of x,. Along 7., the values of X;04cs Will be biased toward zero

(because we minimize [|(3)7<||1), while, along 7T;, they may be biased away from zero.
This will create the following problem. The set 7; contains the set A.; which needs to
be deleted. Since the estimates along A.; may be biased away from zero, one will need a
higher threshold to delete them. But that would make detection more difficult, especially

since the estimates along A; C 7, will be biased towards zero. A similar issue for noisy

CS, and a possible solution (Gauss-Dantzig selector), was first discussed in [52].

2.2.3 Modified-CS with Add-LS-Del

The bias issue can be partly addressed by replacing the support estimation step

of Modified-CS by a three step Add-LS-Del procedure summarized in Algorithm 2. It
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involves a support addition step (that uses a smaller threshold - a,q4), as in (2.4), followed
by LS estimation on the new support estimate, 744+, as in (2.5), and then a deletion
step that thresholds the LS estimate, as in (2.6). This can be followed by a second LS
estimation using the final support estimate, as in (2.7), although this last step is not
critical. The addition step threshold, a.qq, needs to be just large enough to ensure that

the matrix used for LS estimation, Az, , is well-conditioned. If a,qq is chosen properly

dd,¢
and if n is large enough, the LS estimate on 7T,qq,; will have smaller error and will be less
biased than the modified-CS output. As a result, deletion will be more accurate when
done using this estimate. This also means that one can use a larger deletion threshold,
Qgel, Which will ensure quicker deletion of extras.

Related ideas were introduced in our older work [1, 13] for KF-CS and LS-CS, and
in [60, 49] for a greedy algorithm for static sparse reconstruction.

We explain how to automatically set the parameters for both modified-CS-add-LS-del
and modified-CS in Sec 2.7.1.

2.2.4 Some definitions

Definition 2.2.1. For any matriz, A, the left S-restricted isometry constant (left-RIC)
ds.1ert(A) and right S-restricted isometry constant (right-RIC) 0 rigne(A) are the smallest

real numbers satisfying
(1 = dser(A)lell* < | Arell® < (1 + dsrigne(A))l| ]| (2.8)

for all sets T C [1,m] of cardinality |T| < S and all real vectors ¢ of length |T|. The

restricted isometry constant (RIC)[10] is the larger of the two, i.e.,

55 = max{as,left(A)a 5S,Tight(A)}-

Definition 2.2.2. The restricted orthogonality constant (ROC) [10], Os, s,(A), is the

smallest real number satisfying

|/ A7 Az ca| < O, sullca ] el (2.9)
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Algorithm 2 Modified-CS-Add-LS-Del
For t > 0, do

1. Noisy t;. If t =0, set T; = () and compute X modes as the solution of (2.1).
2. Modified-CS. If t > 0, set T; = N;_; and compute Xt modes aS the solution of (2.2).

3. Additions / LS. Compute Taqq+ and the LS estimate using it:

At: {Z : ’(Xt,modcs)” > aadd}
Tadar =T U A,

()A(t,add)ﬁdd,t :ATadd,tTyt’ ()A(t,add)ﬁfddyt =0

4. Deletions / LS. Compute 7; and LS estimate using it:

Ry = {i € Tadds | (Xtada)il < qer}
Te = Tadaar \ Re
(Xt)7 :AﬁTyt, (fit)fftc =0

5. Set /\7} = 7~; Feedback /\7t Output x;.

for all disjoint sets T, To C [1,m] with |T1| < S1, |T2| < Sy and Sy + Se < m, and for

all vectors ¢y, co of length |T1|, |Tz| respectively.

In this work, we need the same condition on the RIC and ROC of all measurement

matrices A; for t > 0. Thus, in the rest of this paper, we let
dg = max ds(Ay), and g, g, 1= I£l>aOX951752(At).

If we need the RIC of ROC of any other matrix, then we specify it explicitly.
As seen above, we use « to denote the support estimation threshold used by modified-
CS and we use aaqq, aigel to denote the support addition and deletion thresholds used by

modified-CS-add-LS-del. We use N; to denote the support estimate at time t.

Definition 2.2.3 (7, Ay, Acy). We use Ty := N, to denote the support estimate from

the previous time. This serves as the predicted support at time t. We use Ay := N; \ Ty
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to denote the unknown part of support Ny and A, := T; \ N; to denote the “erroneous”

part of support N.
With the above definition, clearly, N; = T, U A, \ A,

Definition 2.2.4 (7~§, At, Ae,t)- We use 7~Z = /(ft to denote the final estimate of the
current support; At = /\/}\7} to denote the “misses” in M and Ae,t = 72\/\/} to denote

the “extras’”.

Definition 2.2.5 (Define Taddt, Daddts Deaddt). The set Taaar is the support estimate
obtained after the support addition step in Algorithm 2 (modified-CS-add-LS-del). It is
defined in (2.4). The set Aggar := Ni \ Taaar denotes the set of missing elements from

N; and the set A¢ gaqr := Taaar \ Ny denotes the set of extras in it.

Remark 2.2.6. At certain places in the paper, we remove the subscript t for ease of

notation.

2.2.5 Modified-CS error bound at time ¢

By adapting the approach of [12], the error of modified-CS can be bounded as a
function of |T¢| = |Ni| + |Acs| — |A¢| and |A;]. This was done in [61]. We state a
modified version here.

For completeness, we provide a proof for following lemma in Appendix A.0.1.

Lemma 2.2.7 (modified-CS error bound). Assume that y, satisfies (1.2) and the support
of x; is Ny. Consider step 2 of Algorithm 1 or 2. If S48, = ON|+acd 218 <

(V2 —1)/2, then

41+
”Xt - fct,modcs” < Cl(|7;| + 3’At|)€ < 7.50e, Cl(S) = 1——@
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Notice that the bound by Ci(|7T;| 4+ 3|A|)e will hold as long as dj7;143a,] < 1/2. By
enforcing that 6j7;13/a,] < 1/2c for a ¢ < 1, we ensure that C'(.) is bounded by a fixed
constant. To state the above lemma we pick ¢ = v/2 — 1 and this gives C;(.) = 7.50. We

can state a similar result for CS [12].

Lemma 2.2.8 (CS error bound [12]). Assume that y, satisfies (1.2) and the support of
x; is Ny. Let Xy .5 denote the solution of (2.2) with T, = 0. If dopny < (V2 —1)/2, then

%, — %y.0]| < C1(2ING e < 7.50¢

2.2.6 LS step error bound at time ¢

We can claim the following about the LS step error in step 3 of Algorithm 2.

Lemma 2.2.9. Assume that y, satisfies (1.2) and the support of x; is Ny. Consider step
3 of Algorithm 2.

L. (Xt_f(t,add)"radd,t = (A'Tadd,t/A’Tadd,t)il[Andd,tlwt+A7—add,t/AAadd,t(Xt)Aadd,t]7 (xt—fct,add)Aadd,t =
(Xt) Aggaer and (X — Xp ada)i = 0, if @ & Tadar U Dadd,-

O Todd el Ada sl
L e

2 (@) 1100 = Ra0ad) T | < 7

. O T w11 A gt
() 1(x¢ — X¢,ada) || < \/#mﬁr (1 =5 %) v -

Proof: The first claim follows directly from the expression for X;,qq. The second
claim uses the first claim and the facts that ||[A7'|[s < 1/\/1 =687, |[(A7/Ar)7Y| <

1/(1 = dyr) and |[A7uallz < 017,41 [1]-
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2.3 Stability Over Time Results Without Signal Value

Change Assumptions

As suggested by an anonymous reviewer, we begin by first stating a stability over
time result for modified-CS and modified-CS-add-LS-del without assuming any model
on how the signal changes. This result is quite general and is applicable to various types
of signal change models. In Sections 2.4 and 2.5, we specialize the proof technique to get

stability results for two sets of signal change assumptions.

2.3.1 Stability over time result for Modified-CS

The following facts are immediate from Algorithm 1.
Proposition 2.3.1 (simple facts). Consider Algorithm 1.

1. An i € N; will definitely get detected in step 3 if |(x¢)i| > @ + ||Xt — Xt.modes || 0o-

2. Similarly, all i € A.¢ (the zero elements of T;) will definitely get deleted in step 3

ifOé Z th - fct,modcs”oo-

Using the above facts and Lemma 2.2.7 and an induction argument, we get the

following result.

Theorem 2.3.2. Consider Algorithm 1. Assume that the support size of x; is bounded by
S and there are at most S, additions and removals at all times. Assume that y; satisfies

(1.2). If the following hold
1. (support estimation threshold) set a = 7.50,
2. (number of measurements) dg,6s, < 0.207,

3. (number of small magnitude entries) |B;| < S,, where B, = {i € N; : |(x):] <

« + 7.50€},
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4. (initial time) at t = 0, ng is large enough to ensure that |A, =0, A, = 0.
then for all t,
1L |At| < Sa, |Ae,t| =0, |7~;| <5,
2. [ <28, |T;| <8, |Acy| < Sa,
3. and ||x; — @] < 7.50e.

The proof is provided in Appendix A.0.2.

2.3.2 Stability over time result for Modified-CS-add-LS-del

A result similar to the one above can also be proved for modified-CS-add-LS-del.

Theorem 2.3.3. Consider Algorithm 2. Assume that the support size of x; is bounded by
S and there are at most S, additions and removals at all times. Assume that vy, satisfies

(1.2). If the following hold
1. (addition and deletion thresholds)

(a) cvaqq 18 large enough so that at most f false additions per unit time,

(b) cger = 1.12€ + 0.261/Sy (Ctaa + 7.50€),
2. (number of measurements) dgy6s, < 0.207, dg12g,+5 < 0.207,

3. (number of small magnitude entries) |B;| < S,, where By = {i € N; : |(x¢)i] <

max{aqqq + 7.50€, 2004¢1} },
4. (initial time) at t = 0, ng is large enough to ensure that |A,| =0, A, = 0.
then for all t,

1' |At| S Sa; Ae,t = 0; |7;| S S;
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2. |Ay| <28, |Acy] < Sa, [T < S,
3. | Dudadl < Sus |Desadae < Sat fo |Tadaal < S+ Sa+ f,
4‘ th - -i't,modcsH < 7.50¢

5. and ||x; — 2] < 1.12€ + 1.261v/20305,.

Proof is provided in Appendix A.0.3.

2.3.3 Discussion

Notice that the support error bound in both results above is 2.5,. Under slow support
change, S, < 9, this bound is small compared to the support size S, making the result
a meaningful one. Also, the reconstruction error is upper bounded by a constant times
€. Under a high enough signal-to-noise ratio (SNR), this bound is also small compared
to the signal power.

If f =S5, in Theorem 2.3.3, both Modified-CS and Modified-CS-add-LS-del need
ds16s, < 0.207. Consider noisy ¢, i.e. (2.1). Since it is not a recursive approach (each
time instant is handled separately), Lemma 2.2.8 is also a stability result for it. From
Lemma 2.2.8, it needs do5 < 0.207 to get the same error bound. When S, < 5, clearly

it requires a stronger condition than either of the modified-CS algorithms.

Remark 2.3.4. Consider the noise-free case, i.e. the case when € =0, y, = AiXy, with
the number of support additions and removals per unit time at most S,. In this case, our
results say the following: as long as the signal change assumptions hold, dsyrs, < 0.207
is sufficient for both algorithms. It is easy to show that dsis, e < 1 s also necessary
for both algorithms. We give a proof for this in Appendix A.0.8. Thus the sufficient
condition that our results need are of the same order in both S and S, as the necessary
condition and hence these results cannot be improved much. Thus, for example, RIP of
order S + kv/S, or /S + kS, will not work. This remark is inspired by a concern of an

anonyious TeVLEWET.
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2.4 Stability Results: Simple But Restrictive Signal Change

Assumptions

In this section, we assume a very simple but restrictive signal change model that
allows for slow nonzero coefficient magnitude increase after a new coefficient is added

and slow decrease in magnitude before a coefficient is removed.

2.4.1 Simple but restrictive signal change assumptions

We use a single parameter, r, for the newly added elements’ magnitude and for the
magnitude increase and decrease rate of all elements at all times. We also fixes the

number of support additions and removals to be S,.
Model 1. Assume the following.

1. (addition and increase) At eacht > 0, S, new coefficients get added to the support
at magnitude r. Denote this set by A;. At each t > 0, the magnitude of S,
coefficients out of all those which had magnitude (j — 1)r at t — 1 increases to
gr. This occurs for all 2 < 5 < d. Thus the mazrimum magnitude reached by any

coefficient is M = dr.

2. (decrease and removal) At each t > 0, the magnitude of S, coefficients out of all
those which had magnitude (j + 1)r at t — 1 decreases to jr. This occurs for all
1<j<(d-2). At eacht >0, S, coefficients out of all those which had magnitude
r att —1 get removed from the support (magnitude becomes zero). Denote this set

by Rt'

3. (initial time) At t = 0, the support size is S and it contains 2S, elements each
with magnitude r,2r,...(d — 1)r, and (S — (2d — 2)S,) elements with magnitude
M.

www.manaraa.com



24

Fig. 2.1 illustrates the above signal change assumptions. To understand its implica-

tions, define the following sets. For 0 < j < d — 1, let
Dy(j) :={i : |zea| = jr, |we14l = (G +1)r}
denote the set of elements that decrease from (j 4 1)r to jr at time, t. For 1 < j < d, let

It(.?) = {Z N |.'th7i| = j’]”, |xt71,i| —_ (] _ 1)7’}

denote the set of elements that increase from (j —1)r to jr at time, ¢t. For 1 < 7 <d—1,
let
Si(j) ={i: 0 <|xs | < jr}

denote the set of small but nonzero elements, with smallness threshold jr. Clearly, the
newly added set, A; = Z;(1) and the newly removed set, R; = D;(0). Also, |Z;(j)| = S,,
De(4)] = Sas [S(5)] = 2(j — 1) Sa.

Consider a 1 < 7 < d. From Signal Change Assumptions 1, it is clear that at any
time, ¢, S, elements enter the small elements’ set, S;(j), from the bottom (set A;) and

S, enter from the top (set D;(j —1)). Similarly S, elements leave S;(j) from the bottom
(set R;) and S, from the top (set Z;(j)). Thus,

Si(J) =S () U (A UD(5 — 1)) \ (Re UZ(j)) (2.10)

Since Ay, Ry, Di(j — 1),Z4(j) are mutually disjoint, Ry € S;—1(j) and Zy(j) € Si—1(4),

thus, (2.10) implies that

Si 1) UAN\NR =S(J))UL(5) \De(j — 1) (2.11)

Also, clearly,

Ni=Ni1 UA N\ R, (2.12)
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Figure 2.1: Signal Change Assumptions 1 (Values inside rectangular denote magnitudes.)
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2.4.2 Stability result for modified-CS

The first step is to find sufficient conditions for a certain set of large coefficients to
definitely get detected, and for the elements of A, to definitely get deleted. These are
obtained in Lemma 2.4.2 by using Lemma 2.2.7 and the following simple facts. Next, we
use Lemma 2.4.2 to ensure that all new additions to the support get detected within a
finite delay, and all removals from the support get deleted immediately.

In general, for any vector z, ||2]|« < ||z|| with equality holding only if z is one-sparse
(exactly one element of z is nonzero). If the energy of z is more spread out, ||z|o will
be smaller than ||z]|. Typically the error x; — X modes Will not be one-sparse, but will be

more spread out. The assumption below states this.

Assumption 2.4.1. Consider Algorithm 1. Assume that the Modified-CS reconstruction

error is spread out enough so that

Cum

||Xt - jt,modcs”oo S \/S—aHXt - jt,modes”

for some Car < /S,

Combining Proposition 2.3.1 and the above assumption with Lemma 2.2.7, we get

the following lemma.

Lemma 2.4.2. Consider Algorithm 1. Assume Assumption 2.4.1. Assume that |N;| =
SNt: |Ae,t| < SAeﬁt and |At| < SAV

1. All elements of the set {i € Ny : [(x¢):| = b1} will get detected in step 3 if

® Osy,+5a, 255, < 0.207, and by > a + SL7.50¢.

2. In step 3, there will be no false additions, and all the true removals from the support

(the set A. ;) will get deleted at the current time, if

® b5y 155 +a5,, < 0.207, and o > SLT.50e.
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We use the above lemma to obtain sufficient conditions to ensure the following: for
some dy < d, at all times, ¢, (i) only coefficients with magnitude less than dyr are part
of the final set of misses, A, and (ii) the final set of extras, Ae,t; is an empty set. In
other words, we find conditions to ensure that A, C S;(dy) and |A, | = 0. Using Signal
Change Assumptions 1, |S;(do)| = 2(dy — 1)S, and thus A; C S,(dy) will imply that
A] < 2(dp — 1)

Theorem 2.4.3 (Stability of modified-CS). Consider Algorithm 1. Assume Signal
Change Assumptions 1 on x;. Also assume that vy, satisfies (1.2). Assume that As-

sumption 2.4.1 holds. If, for some dy < d, the following hold

1. (support estimation threshold) set a = %7.506

2. (number of measurements) g4 (2r, +1)s, < 0.207,

3. (new element increase rate) r > G, where

a+ 5—%7.506

do

lI>

G € (2.13)

4. (initial time) at t = 0, ng is large enough to ensure that Ay C So(dy), |Aq| <

2(do — 1)Sa, |Aco] =0 and |To| < S
where
k1 £ max(1,2dy — 2) (2.14)
then,
1oatallt >0, |T| <8, |Acy| =0, A, C Si(dy) and so |A,| < 2(do — 1)S,,
2. at allt>0,|T] <S5, |Act| < Sa, and |Ay] < k1S,

3. at allt >0, ||xXt — Xt modes|| < 7.50€
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Proof: 'The proof is given in Appendix A.0.4. It follows using induction.

Remark 2.4.4. The condition /J is not restrictive. It is easy to see that this will hold if

ng 1s large enough to ensure that da5(Ag) < 0.207.

2.4.3 Stability result for Modified-CS with Add-LS-Del

The first step to show stability is to find sufficient conditions for (a) a certain set of
large coefficients to definitely get detected, and (b) to definitely not get falsely deleted,
and (c) for the zero coefficients in Tqq to definitely get deleted. These can be obtained
using Lemma 2.2.7 and simple facts similar to Proposition 2.3.1.

As explained before, we can assume that the modified-CS reconstruction error is not
one-sparse but is more spread out. The same assumption should also be valid for the LS

step error. We state these next.

Assumption 2.4.5. Consider Algorithm 2. Assume that the Modified-CS reconstruction
error is spread out enough so that Assumption 2.4.1 holds and assume that the LS step

error along Taqay s spread out enough so that

. CL N
||(Xt - Xadd,t)Tadd,t ||<X> < \/S_H(Xt - Xadd,t)Tadd,z ||
a
at all times, t, for some (5, < \/S,.

Combining the above assumption with Lemmas 2.2.7 and 2.2.9, we get the following

lemmas.

Lemma 2.4.6 (Detection condition). Consider Algorithm 2. Assume Assumption 2.4.5.
Assume that [Ny = Sn,, |Aet] < Sau,, A < Sa,. Pick a by > 0. All elements of the

set {i € A |(xy);| = b1} will get detected in step 3 if

® G5, 5a, ,+25a, < 0.207, and by > agaq + S=T7.50€.
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Lemma 2.4.7 (Deletion and No false-deletion condition). Consider Algorithm 2. As-

sume Assumption 2.4.5. Assume that [Taaae| < ST,5,, and [Dagay] < Sa

add,t *

1. Pick a by > 0. No element of the set {i € Taaar : |(X¢)i] > b1} will get (falsely)
deleted in step 4 if
° 5STadd,t < 1/2 and by > age + \5_27(\/56 + 295Tadd,t’sAadd,t ||(Xt)Aadd,t||)'

2. All elements of A¢ qaq will get deleted in step 4 if

o b5y, < 1/2 and aua > S (Ve + Wy s (%), ).

Using the above lemmas, we can obtain sufficient conditions to ensure that, for some

dy < d, at each time t, A, C S,(dy) (so that |A,| < (2dy — 2)S,) and |A. | = 0.

Theorem 2.4.8 (Stability of modified-CS with add-LS-del). Consider Algorithm 2. As-
sume Signal Change Assumptions 1 on x;. Also assume that y, satisfies (1.2). Assume

that Assumption 2.4.5 holds. If, for some 1 < dy < d, the following hold

1. (addition and deletion thresholds)

(a) vaqq i large enough so that there are at most [ false additions per unit time,
(b) aer =/ 2Cre + 2ksbss 5.t fh25aCLT

2. (number of measurements)

(a) ds+s,a+2k) < 0.207,
(b) 545,45 <1/2,
(¢) Osi50t1hase < bas

3. (new element increase rate) r > max(Gy,Gs), where

n Qadd + S4=7.50€
do

1

2\/§CL€
V/Sa(do — 4k30s+ 5,4 f.k05.C1)

(2.15)
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4. (initial time) ng is large enough to ensure that Ay C So(do), |Ao] < (2dy — 2)S,,

’AE,O‘ - 0; |,7~6‘ S S;
where

k1 £ max(1,2dy — 2)

k’g = maX(O, 2d0 - 3)

do—1 do—2

NI R Ik (2.16)
j=1 j=1

then, at all t > 0,
11T < S, |Aui] =0, and A, € S,(do) and so |Aq| < (2do — 2)S,,
2. |Ti| < S, |As| < Sa, and || < ky S,
3. N Tadar] < S+ S+ f, [Acadar] < S+ [, and |Agaar] < kaSa,
4o 1% — Xemodes|| < C1(S + Sy + 2k1S,)e < 7.50¢,

5. |Ix; — %] < 1.261ks/Syr + 1.12¢.

Proof: The proof is given in Appendix A.0.5.

2.4.4 Discussion

Notice that, with Signal Change Assumptions 1, at all times, ¢, the signals have the
same support set size, |NV;| = S and the same signal power, ||x;]|*> = (S —(2d—2)S,)M?+
25, Z;.l;i j2r?. As in the previous section, here again the support error bound in both
results above is proportional to S,. Under slow support change, this means that the
support error is small compared to the support size. To make the comparison of the
above two results simpler, let us fix dy = 2 and let f = S, in Theorem 2.4.8. Consider

the conditions on the number of measurements. Modified-CS needs dg155, < 0.207.
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Modified-CS-add-LS-del needs dg.55, < 0.207; dg105, < 0.5 (this is implied by the first
condition) and fgi0g, 5, < ﬁ. Since 0s42s,.5, < 0st3s,, the third condition is also
implied by the first as long as (;, < 1.2. In simulation tests (described in Sec 2.5.4) we
observed that this was usually true. Then, both modified-CS and modified-CS-add-LS-
del need the same condition on the number of measurements: dg 55, < 0.207. Consider
noisy ¢; i.e. (2.1). As explained earlier, Lemma 2.2.8 serves as a stability result for
it. From Lemma 2.2.8, iy needs do5 < 0.207 to get the same error bound which is
significantly stronger when S, < S.

Let us compare the requirement on r. In Theorem 2.4.8 for modified-cs-add-lIs-del,

< %{?E < G4 and thus G, is what

1 1 _do W2 5.7¢
since 0s48,+4 ko8, < 2 Thaly 0 5O Gy < J5a€ < i

decides the minimum allowed value of r. Thus, it needs r > G; = d—lo[Oéadd + 5—]\5{—7.506].

On the other hand, modified-CS needs » > G = %[2%7.506]. If (aqq is close to zero,
this means that the minimum magnitude increase rate, r, required by Theorem 2.4.8 is

almost half of that required by Theorem 2.4.3. In our simulation experiments, a,qq Was

typically quite small: it was usually close to a small constant times €//n (see Sec 4.4).

Remark 2.4.9. From the above results, observe that, if the rate of magnitude change,
r, is smaller, r > Gy or r > G will hold for a larger value of dy. This means that the
support error bound, (2dy — 2)S,, will be larger. This, in turn, decides what conditions
on the RIC and ROC are needed (in other words, how many measurements, n;, needed).
Smaller r means a larger dy is needed which, in turn, means that stronger conditions on
the RIC and ROC (larger n;) are needed. Thus, for a given ny = n, as r is reduced, the
algorithm will stabilize to larger and larger support error levels (larger dy) and finally

become unstable (because the given n does not satisfy the conditions on 6,0 for the larger

do).
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2.5 Stability Results: Realistic Signal Change Assumptions

We introduce the signal change assumptions in the next subsection and then give the
results in the following two subsections. The discussion of the results and a comparison

with the results of LS-CS [1] is provided in the two subsequent subsections.

2.5.1 Realistic signal change assumptions

Briefly, we assume the following. At any time the signal vector x; is a sparse vector
with support set N; of size S or less. At most S, elements get added to the support
at each time ¢ and at most S, elements get removed from it. At time ¢t = ¢;, a new
element j gets added at an initial magnitude a;, and its magnitude increases for the next
d; > dyin time units. Its magnitude increase at time 7 (for any ¢; < 7 <t; +d; is r; .
Also, at each time t, at most S, elements out of the “large elements” set (defined in the
signal model) leave the set and begin to decrease. These elements keep decreasing and
get removed from the support in at most b time units. In the model as stated above,
we are implicitly allowing an element j to get added to the support at most once. In
general, j can get added, then removed and then added again. To allow for this, we let
t; be the set of time instants at which j gets added; we replace a; by a;+ and we replace
d; by d;; (both of which are nonzero only for ¢ € t;).

As demonstrated in Section 2.6, the above assumptions are practically valid for MRI

sequences.
Model 2. Assume the following.

1. At the initial time, t = 0, the support set, Ny, contains Sy nonzero elements, i.e.

|N0| - So.

2. At time t, S, elements are added to the support set. Denote this set by A;. At

time t, a new element j gets added to the support at an initial magnitude a;; and
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its magnitude increases for at least the next dy;, > 0 time instants. At time 7 (for

t <7 <t+dmn), the magnitude of element j increases by rj, > 0.

® a;, is nonzero only if element j got added at time t, for all other times, we

set it to zero.

3. We define the “large set” as

Li={j¢ Utr:t—dmin+1"47 (x| = £},

for a given constant . Elements in L, 1 either remain in L; (while increasing or

decreasing or remaining constant) or decrease enough to leave L;.

4. At time t, Sy, elements out of L,y decrease enough to leave L,_y. Denote this set
B;. All these elements continue to keep decreasing and become zero (removed from
support) within at most b time units. Also, at time t, S, elements out of these

decreasing elements are removed from the support. Denote this set by R;.

5. At all times t, 0 < S, < Sa, 0 < Sy < min{Se,|Li-1]}, 0 < S,r < S, and the

support size, Sy .= |Ny| < S for constants S and S, such that S+ S, < m.

Fig.2.2 illustrates the above assumptions. We should reiterate that the above is not
a generative model. It is only a set of assumptions on signal change. One possible

generative model that satisfies these assumptions is given in Appendix A.0.9.

Remark 2.5.1. It is easy to see that Signal Change Assumptions 1 are a special case of
Signal Change Assumptions 2 with a;; =7j; =7, dmin =d, b=d, So =5, Sar = Sas =
Sr,t = Sa, {=dr.

From the above assumptions, the newly added elements’ set A; := N; \ N;_1; the

newly removed elements’ set R, := N;_1 \ N;; the set of elements that begin to start
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Figure 2.2: Signal Change Assumptions 2 (Values inside rectangular denote magnitudes.)
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decreasing at t, By :== L;_1 \ L. Define the following sets: the set of increasing (actually

non-decreasing) elements at ¢,

T :={j € Nyt |(xe);] > 1(z-1)51}:

and the set of small and decreasing elements,

Notice that Z; also includes j if its magnitude does not change from ¢t — 1 to .

Condition 2 of the above model implies that (i) Ay = Say; (i1) if 7 € Ay, (i€
if j is added at t —ty) for a ty < duin, then |(x¢);| = aj1—¢, + Zi:t_toﬂ ;- and (iii)
A CTiNZLyyq - Ny, (all newly added elements increase for at least dy;, time
instants).

Condition 3 implies that £, € £L;USD;. It also implies that (U,_,_; A )NL, =
(). This, along with condition 2 means that U._, , A, CZ,.

Condition 4 implies that |B;| = Sau; Lio1 \ By € Ly; SDy = SDiq U B\ Ry;
S Ser > 3 S [SD < S0, yiy St and [Ry| = Sy

Condition 5, along with the above, implies that |SD;| < bS,,.

Finally, it is easy to see that N, = Z, U £, U 8D,. The sets Z;, L, are not disjoint,
but both are disjoint with SD;.

The above model tells us the following. Consider an element j that got added at
time ¢, ie. j € Ay AT =1tt+1,. . t+duyn—1,7J€Z and j & L.. At 7 =1t + dyn,
Jj € I if |(z;);] > ¢ then j € L, as well. For 7 > t + dyin, what happens depends on
T—1. If j € £L,_4, then either j € L, or it decreases enough to enter the small and
decreasing set, i.e. 7 € B, CSD,. If j € SD,_1, then either it keeps decreasing or gets
removed, i.e. either j € 8D, or j € R, C Nt If j € LS | NZ,_4, then, if |(z,);| > ¢
then j € £, NI, else j € LSNI,.

We now discuss sufficient conditions for condition 5 of the signal model to hold.
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Remark 2.5.2. Since S; = S;—1 + St — Spt = So + 23:1 Sar— Zizl Syr, thus, Sy < S
holds if So < S and St _, Sar < 3025 Sar.

Notice that an element j could get added, then removed and added again later. Let

ty:={t:a;, #0}

denote the set of time instants at which j gets added. Clearly, t; = 0 if j never got
added. Let

Qmin '= Min min a;;
Jity#£0 tet; t#0 I

denote the minimum of a;, over all elements j that got added at ¢ > 0. We are excluding

coefficients that never got added and those that got added at ¢t = 0. Let

Tmin(d) 7= min min ~ min 7r;,
Jit5£0 t€t5,t£0 Te[t+1,t+d)

denote the minimum, over all elements j that got added at ¢ > 0, of the minimum of r;
over the first d time instants after j got added.
Define

(= Amin + dminrmin(dmin)- (217)

With ¢ defined this way, clearly, N; = (UL_,_,; 1A;) UL USD; where the three sets
are mutually disjoint.

Also, with ¢ as above, it is clear that for ¢ > dyn, £ = L;-1 U Ai_q_.. 1 \ B, and

min

for t < duyin, £+ = L1 \ Bi. Here, by definition, £; ; and A; 4 . 1 are disjoint and

min

Bt Q Et—l- ThUS,

t_dmin t

Lol = [Lol+ D Sur—> Sar
T=1 T=1

Also notice that |£y] < Sp. Using these facts and Remark 2.5.2, we can conclude the

following.

Remark 2.5.3. Let { := apin + Aumin"min(dmin).  Then, condition 5 of Signal Change

www.manharaa.com




37

1. 0 S Sa,,t S Sa and 0 S Sd,t S Sa;
2. (dmin + b + ]-)Sa S |£0| S SO S S; and
8. 3y Sar € 3000 Sar < Lol + 0T S

The leftmost lower bound of the second condition ensures that the upper bound of the third
condition is not smaller than the lower bound. The upper bound of the third condition
ensures that Sqy < |Li—1| always (it is actually written to ensure Sgi—p < |Li—p-1]).
So < S and the lower bound of the third condition ensures that S; < S (as explained in

Remark 2.5.2).
A simpler sufficient condition is as follows.

Remark 2.5.4. Let { := ayin + dmin"min(dmin)-  Then, condition 5 of Signal Change
Assumptions 2 holds if (dmin + b+ 1)S, < |Lo| < So < S; Sar = S, for all t; and for
1<t <b, Ser =0, and fort > b, Spy = Sa.

In the above model, we only assume that all coefficients will get removed in at most b
time units. However, it can happen that some coefficients get removed earlier than that

and hence it is fair to include this in the signal model. We do this below.
Model 3. Assume Signal Change Assumptions 2 with the following extra assumption.
o Out of the Sq; elements that started decreasing at time t, at least 7Sq; of them get

removed by t + T for T < b.

All implications of the above model are the same as those of Signal Change Assump-
tions 2, except that now, |SD;| < Sq;+ I’_TlSd,t_l +... %Sd’t_bﬂ < ’%15@; while for Signal

Change Assumptions 2, |SD;| < bS,.
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2.5.2 Modified-CS stability result

For the above signal model, we can claim the following.

Theorem 2.5.5. Consider Algorithm 1. Assume Signal Change Assumptions 3 on X;.
Also assume that y, satisfies (1.2). Assume that Assumption 2.4.1 holds. If there exists

a dy < dyin such that the following hold:
1. algorithm parameters

(a) a = 5—1\5%7.506,

2. number of measurements

(CL) 5S+3(@+d0+1)5a < 0.207,

3. initial magnitude and magnitude increase rate:

t+do
min{/, min min(a,; + Z 75
(6 i in(ass + 3 7o)
Car

> o+ 7.50€,

VS,

4. att =0,ng is large enough to ensure that |At| < HTlSa + dyS,, |Ae,t| =0,
then, for allt,

1. 1A < @Sa +doSa, |Aeyl =0, [Te] < 8,

2. |Ay < @Sa +doSa + Sa, [Ti| <5, |Acy| < Sa,

3. and ||Xt — )A(t” S 7.50¢

Proof: See Appendix A.0.6.

Corollary 2.5.6. Under Signal Change Assumptions 2, the result of Theorem 2.5.5

changes in the following way: replace @Sa by bS, everywhere in the result.
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Remark 2.5.7. Condition 4 of the above result is not restrictive. It is easy to see that

it will hold if d25(Ao) < 0.207 and if |Lo| > [So — (LS, + doS,)].

Remark 2.5.8. A simpler sufficient condition for condition 3 is: min(¢, amin+doTmin(do)) >

%ﬂ? 50¢.

2.5.3 Modified-CS-Add-LS-Del stability result

Finally we study Modified-CS-Add-LS-Del.

Theorem 2.5.9. Consider Algorithm 2. Assume Signal Change Assumptions 3 on X;.
Also assume that y, satisfies (1.2). Assume that Assumption 2.4.5 holds. If there exists
a dy < dyin such that the following hold:

1. algorithm parameters

(a) aqq s large enough so that there are at most f false adds at time t, i.e.

‘At\/\/’ﬂ <f

(b) Qg = 1125k +0.261¢,h, where h? = (U5 + do) (aaa + 47.50¢)?
2. number of measurements

(a) 5s+3(@5a+dosa+sa) < 0.207

(b) 515,15 < 0.207

(¢) Oy gy p 08115, a5, < 0207

3. initial magnitude and magnitude increase rate:
t+do

min{/, min min(a;; + E Tir)}
Jitj#£D tet;
T=t+1

\/—g_a7.5oe, 20vger} (2.18)

> max{agqq +

enough to ensure that |A,| < I’JFTISa + doS,, |Ae,t| =0,
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then
1. Ay, CSD,UAUA .. Ao
2. |A] < B, +doS,, [Aeel =0, [To < 5
3. 1A < ©EUS, 4 doS, + S, |To| < S

4' ||Xt - }A(t,modcs” S 7-5067

R

I — %l < 1126+ 12611/ (42 + dy) (g + 7.506)S,.

Proof: See Appendix A.0.7.

Remark 2.5.10. Claims similar to Corollary 2.5.6 and Remarks 2.5.7 and 2.5.8 hold

for the above result also.

2.5.4 Discussion

Remark 2.5.11. Notice that Signal Change Assumptions 2 or 3 allow for both slow
and fast signal magnitude increase or decrease. Slow magnitude increase/decrease would
happen, for example, in an imaging problem when one object slowly morphs into another
with gradual intensity changes. Or, in case of brain regions becoming “active” in response
to stimuli, the activity level gradually increases from zero to a certain maximum value
within a few milliseconds (10-12 frames of fMRI data), and similarly the “activity” level
decays to zero within a few milliseconds. In both of the above examples, a new coefficient
will get added to the support at time t at a small magnitude a;; and increase by r; -
per unit time for sometime after that. Similarly for the decay to zero of the brain’s
activity level. On the other hand, the signal model also allows support changes resulting
from motion of objects, e.q. translation. In this case, the signal magnitude changes will
typically not be slow. As the object moves, a set of new pizels enter the support and

he _entering pizels may have large enough pizel intensity and their
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intensity may never change. For our model this means that the pixel enters the support
at a large enough initial magnitude a;¢ but its magnitude never changes i.e. rj, =0 for
all 7. If all pixels exit the support without their magnitude first decreasing, then b = 1.

The only thing that the above results (Theorem 2.5.5 and 2.5.9) require is that (i)
for any element j that is added, either a;; is large enough or r;, is large enough for the
initial few (dy) time instants so that condition 3 holds; and (ii) a decaying coefficient
decays to zero within a short delay, b. (i) ensures that every newly added support ele-
ment gets detected either immediately or within a finite delay; while (ii) ensures removal
within finite delay of a decreasing element. For the moving object case, this translates
to requiring that a;, be large enough. For the first two examples above, this translates to
requiring that r; . be large enough for the first few time instants after j gets added and
that b be small enough.

Recall that §s := maxy~ods(A;). Other than the above assumption, the results also
need that the support estimation thresholds are set appropriately; enough number of mea-
surements, ny, are available at all times t > 0 so that condition 2 holds (this number
depends on the support size, S, the support change size, S, and on b); and condition 4

holds.

For the above results, the support errors are bounded by a constant times S,. Thus,
under slow support change, the bound is small compared to the support size, Sy, making
the above a meaningful result. The reconstruction error is bounded by a constant times
€. Under high enough SNR, this bound is small compared to the signal power. In fact,
for Signal Change Assumptions 2 or 3, the signal power is not bounded. To compare
the results, let us fix some of the parameters. Suppose that b = 3, f = S,, S = 5,
Sat = Srt = Sar = Sa. Let dy = 2. The modified-CS result says the following. If

1. 6S+15Sa < 0207, and

2. LHS of condition 3 > %156,
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then |Ay| < 45, and |A,,| = 0 and ||X; — Xy modes|| < 7.50e. The Modified-CS-add-LS-del

result says the following. If

1. 054155, < 0.207(the other two conditions are implied by this), and

2. LHS of condition 3 > max(auqq + %7.50672.24\5—5—6 + 0.522¢ph), where h? =

4(aadd + %7506)2
then |A;| < 4S, and |A.,| = 0 and ||x; — Xy modes|| < 7.50€.

The CS result from Lemma 2.2.8 says the following. If
1. 095 < 0.207

then [|x; — X¢ ]| < 7.50e.

Thus, both modified-CS and modified-CS-add-LS-del need the same restricted isom-
etry condition (condition on the number of measurements). Under the slow support
change assumption, S, < S; < S. In this case, both the modified-CS algorithms hold
under a weaker restricted isometry condition (potentially fewer number of measurements
required) than what noisy ¢; needs for the same error bound. Next we compare the lower
bounds on the LHS of condition 3 needed by modified-CS and by modified-CS-add-LS-
del. This requires knowing (5; and ;. To get an idea of the values of (3; and (;,, we did
simulations based on Signal Change Assumptions 2 with S = 0.1m, S, = Sqr = Syt =
Se = 0.01m,b = dyin = 3,75+ = 1,a;; = 1 (we generated it using the generative model
given in Appendix A of [30]). The measurement matrices A; were zero mean random
Gaussian n; X m matrices with columns normalized to unit norm. For ¢ = 0, ng = 160;
for t > 0, n, = n = 57. The measurement noise, (w;); ~**% uniform(—c;,c;) for
1<j<m. Fort=0, ¢ =0.01266; for t > 0, ¢;, = 0.1266. We used the same measure-
ment Gaussian matrix A for ¢ > 0. We generated 500 realizations respectively with dif-
ferent choices of m, and used both algorithms for reconstruction. When m = 200, we got,
Car = 0.9328/S,, ¢, = 0.87341/S,; when m = 1000, (y; = 0.8295y/S,, (1, = 0.8628/S,;
when - #.=-20005-Ca-=-0:8497+/S,, (1, = 0.8628+/5,.
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For our comparison, we pick the largest values we got from the above experimen-
t: let Car = 0.9328y/S, and (;, = 0.8734+/S,. With these values, modified-CS needs
LHS of condition 3 > 13.99¢ and modified-CS-Add-LS-Del needs LHS of condition 3 >
max{aqq + 7.00¢, 10.978¢ + 3.246v,q4 } = 10.978€ + 3.2460v5qq. With aaqq small enough,
clearly modified-CS-add-LS-del requires a weaker assumption. As explained earlier and
also in [30], aqq is a small threshold that is typically proportional to the noise bound
¢,i.e.,€/y/n. Thus the mod-CS-Add-LS-Del condition is weaker.

The comparison between modified-CS and modified-CS-add-LS-del above is not as
clear-cut as that in the simple model case (Signal Change Assumptions 1). The reason is
that the simple model tells us exactly how many support additions and removals occur
at each time; and it also tells us the exact number of elements with a certain magnitude.
As a result, it is possible to get a better bound on ||z, ,,[|2: this is needed to bound
the LS step error. The LS error decides the value of age and ager, in turn, decides the
lower bound on the LHS of condition 3. The current Signal Change Assumptions 2 or
3 are much more flexible, but this also means that they not give us exact magnitude
information. As a result, the bounds are looser and so the advantage of modified-CS-

add-Is-del is not demonstrated as clearly.

Remark 2.5.12. Finally, we explain why condition 1a of Theorem 2.5.9 is stated the
way it is. Because of how the modified-CS error is bounded, we cannot get a bound on
the reconstruction error for the j coefficient, |(X;); — (x1);]. We can only bound this
error by its infinity norm. Thus, the only way to get an explicit value for c,qq s to let it
equal the upper bound on ||X; — ¢||eo and this will ensure f = 0 false adds. However, the
key point of the add-LS-del procedure is that one can pick an addition threshold that is
smaller than this but results in some false adds, f. As long as f is small enough so that
Ar, . is well conditioned (condition 2b holds), the LS step error will be much smaller.
With age; chosen appropriately, one can still delete all of these false adds (as well as all

elements of the removed set) in the deletion step.
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2.5.5 Comparison with the LS-CS result of [1]

In [1], we obtained a stability result for LS-CS which was a worse algorithm than
modified-CS: it required stronger conditions for exact recovery, and was worse is simu-
lation experiments as shown in [14, 30]. The same signal model and the same strategy
as that of [1] can be used for modified-CS as well and we will, in fact, get a stronger
stability result for it: the modified-CS result will not need condition 3b of the LS-CS
stability result (Theorem 2 of [1]).

The most important difference between the LS-CS result from [1] and our results is
that [1] assumed S, support changes every p frames and the result required a lower bound
on p. With this, one could ensure that all newly added support elements got detected
before the next support change time. This meant that one could delete the false adds
and removals after all new adds got detected, but before the next change time. At this
time, the signal recovery is very accurate (because of zero misses) and hence, for the
result of [1], a very small deletion threshold could suffice. However, as explained earlier
(see Fig 1.1), support change every so often is not a practically valid assumption in most
applications. In this work, we allow the support to change at every time which is more
realistic, but is also more difficult to analyze. With this, one always has some misses at
each time instant (except in the simplest case where all new elements are added at very
large magnitudes). Thus, one cannot wait for all the missed elements to get detected
before deleting the false adds and removals and hence one requires a larger deletion
threshold.

A third difference is that the signal change model of [1] fixed the number of support
additions and removals at each time to be just S,; it fixed the initial magnitude and the
rate of magnitude increase for a new support element j to both be a; at all times; and, for
decreasing coefficients, it assumed a very specific and fixed rate of magnitude decrease.
None of these is a very practical assumption. Our realistic signal change models (Signal

Change Assumptions 2 or 3) allow all these things to vary with time.
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2.6 Model Verification

We verified that two different types of MRI image sequences — a larynx (vocal tract)
MRI sequence and a brain functional MRI sequence — do indeed satisfy Signal Change
Assumptions 2. First we describe model verification for the larynx sequence. We used
a 10 frame sequence and extracted out a 36x36 region of this sequence selected as the
region that includes the part where most of the changes were visible. As shown in earlier
work [14], this sequence is approximately sparse in the 2D discrete wavelet transform
(DWT) domain. A two level db4 wavelet was used there. We computed this 2D DWT,
re-arranged it as a vector and computed its 99.9% energy support set. All elements not
in this set were set to zero. This gave us an exactly sparse sequence x;. Its dimension
m = 36% = 1296. For this sequence, we observed the following. The support size N
satisfied |[N;| < S = 113 for all t. The number of additions from ¢ — 1 to ¢ satisfied
IN; \ Ni—1| < 21 and the number of removals, [N;_1 \ V| < 26. Thus, S, = 26. Also,
the initial nonzero value, a;;, ranged from 13 to 37, the rate of magnitude increase, 7,
ranged from 1 to 37, and the duration for which the increase occurred, d;;, ranged from
0 to 4. Also, the maximum delay between the time that a coefficient began to decrease
and when it was removed was b = 7.

Next we consider a 64x64 functional MRI sequence. fMRI is a technique that is used
to investigate brain function. The sequence we study here is for the brain responding to
a certain type of stimulus (light being turned on and off). This sequence consisted of a
rest state brain sequence to which activation was added based on the models suggested
in [62]. The goal is to be able to accurately extract out the activation region from this
sequence. As is done in [20], one can use the undersampled ReProCS algorithm to extract
out the sparse activation regions from the low rank background brain image sequence, as
long as an initial background brain training sequence is available. In our example, the

activation started at frame 71. For the purpose of ReProCS, the active region “image”
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Figure 2.3: (a): plot of the BOLD signal and of its square. (b): active, transient and
inactive brain regions.

(the image that is zero everywhere except in the active region), is the sparse signal of
interest. For a 23 pixel region that is known to correspond to the part of the brain
that is affected by the above stimulus, the activation was added follows [62]. The 23
pixel region was split into 2 sub-regions so that the activation intensity was smallest at
the boundary of the region and slowly increased as one moved inwards. We show the 2
regions in Fig 2.3b. R4 is the innermost region, R, is the outermost. The activation in
these regions satisfied the following model. For j € Ry, (x;); = b(t)M,. For j € R,
(z¢); = 0.2b(t)>M,. Here M, = 1783 is the maximum magnitude in the active region and
b(t) is the blood oxygenation level dependent (BOLD) signal taken from [62]. It is plotted
in Fig 2.3a. This image sequence was of size 64x64, i.e. its dimension m = 642 = 4096.
We computed its 99.9% energy support and set all elements not in this set to zero. This
gave us our sparse sequence X;. The support size of x;, NV, satisfied |N;| < S = 23 for all
t. The number of additions from ¢ —1 to ¢ satisfied |N; \N;_1| < S, = 13 and the number
of removals, |N;—; \ M| < S, = 13. Also, the initial nonzero value, a;;, ranged from 57
to 97, the rate of magnitude increase, r;;, ranged from 1 to 637, and the duration for
which the increase occurred, d;;, ranged from 6 to 7. Also, the maximum delay between

the time that a coefficient began to decrease and when it was removed was b = 7.
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2.7 Setting Algorithm Parameters And Simulation Results

2.7.1 Setting algorithm parameters automatically

Algorithm 1 has one parameter «. Algorithm 2 has two parameters auqq, qgel. We
explain here how to set these thresholds automatically. It is often fair to assume that
the noise bound on € is known, e.g. it can be estimated using a short initial noise-only
training sequence. We assume this here. In cases where it is not known or can change
with time, one can approximate it by ||y,—1 — A;_1X;_1]|2 (assuming accurate recovery at
t—1).

Define the minimum nonzero value at time ¢, Zmin+ = minjep, |(x¢);|. This can be
estimated as Xpin¢ = min s | [(Xe-1);]-

When setting the thresholds automatically, they will change with time. We set
Qada, using the following heuristic. By Lemma 2.2.9, we have (X; — Xyadd) 7o, =

(A7 AT ) AT W+ ATy Ane sy (X0 Ay, ). To ensure that this is bounded, we

need ||A7;dd,tT|| and ||(A'Tadd,t/A7—add,t)71|| to be bounded. Since HATadd,tTH = m
and [|(A7, A7) 7 = m, we pick uqq: as smallest number such that

Omin (AEdd,t) > 0.4

If one could set ager equal to the lower bound on ins — || (Xt — X¢.add) ||oo, there

Tadd,t
will be zero misses. Using this idea, we let age; be an estimate of the lower bound of

this quantity. Notice that

H (Xt - }A{taadd>7;dd,t HOO S ” (A%y,tAAaddxtzAadd + A%dd,tthOO

< H(Aﬁdd,t/AEdd,t)ilHOOHA'radd,tAAaddxtyAaddHOO + ||A;' WtHOO

add,t

~ H(ATadd,t/ATadd,t)_lHOOCle\Tudd,tHAaddlCQjmin + ||A;;ddytwt”007

where (', Cy are some constant larger than 1. Here we use the fact that for any matrix
B, ||Bllo < C1||B|| for some constant C; and that only small elements are missed and

hence we can approximate ||z;a,,,|lcc by Co times Xpin: where Cy is a small constant
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larger than 1. We cannot compute 0, but it is fair to assume that it is small

Tadd,t],Dadd >

(significantly smaller than one). If we assume that

C1Cy H (A'Tadd,tlA'Tadd,t>7l H OOHITadd,t\,lAaddl < 0.3,

then the above bound simplifies to 0.3Xmin: + ”ATTadd ,Wt||oo- We can approximate 1, by

Yt — AXtmodes- Thus, we set agert = 0.7Tmins — HA%dd’t (Y — AXt.modes) || oo-

For Algorithm 1, we set «; as follows. If ||x; — Xt modes||oo < Camin,s for some C' < 1,
then setting oy = (1 — C')Zmin, Will ensure that there are no misses. If this bound holds
for most entries ¢, then most entries will be correctly recovered, i.e., there will be few
misses. If we ensure amin(Aﬁ) > 0.4 then the number of extras will be bounded. To
try to ensure that both the above hold, we let a; to be the smallest value such that
min; 7. |(Xt,modes)jlj = (1 — C)Xming = 0.5Xmin (we pick C' = 0.5), and owin(A7,) > 0.4.

To get a more robust estimate of the minimum nonzero value of x;, we use a short-

time average of {Xminr,t —to < 7 < t} as the estimate of Zpin,. In our experiments,

to = 10.

2.7.2 Simulation results

In the discussion so far, we only compared sufficient conditions required by different
algorithms. The general conclusion obtained by comparing the sufficient conditions was
that modified-CS-add-LS-del is the best algorithm followed by modified-CS and then
noisy /1. In this section, we use simulations to demonstrate the same thing. We compared
noisy ¢; (simple CS), i.e. solution of (2.1) at each time instant, modified-CS(mod-CS)
as given in Algorithm 1, and modified-CS-add-LS-del (mod-CS-Add-LS-Del) as given in
Algorithm 2. The parameters for the algorithms were set as explained in Sec 2.7.1 above.

The data was generated as follows. We used Signal Model 2 generated as explained
in Appendix A.0.9 with m = 200, S = 20, dwin = 3, Gmin = Tmin(dmin) = 7, Sa = 2,

= 3, { = Gmin + dminTmin(dmin) = 4r and r was varied. The measurement matrices A;
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were zero mean random Gaussian n; X m matrices with columns normalized to unit
norm. We used ng = 160 and n;, = n = 57 for t > 0. The measurement noise,
(wy); ~“e% uniform(—ci, ;) for 1 < j < m. For t = 0, ¢, = 0.01266; for ¢t > 1,
¢ = ¢ = 0.1266. Here ~"*® means that (w;); are independent and identically distributed
(i.i.d.) both for different j’s and for different ¢’s.

In the first set of experiments shown in Fig. 2.4, we used the same measurement
matrix A; = A for all t > 1. In the second experiment shown in Fig. 2.5, A; was time

varying.

Ef||x; =% %]

A the normalized mean extras,

The normalized mean squared error (NMSE),

E[ﬁlfj\\,ﬁ”, and the normalized mean misses, E[I‘é\“/j\\/ﬁ]ftu are used to compare the reconstruc-

tion performance. Here E[.] denotes the empirical mean over the 500 realizations. Con-
sider the results of Fig 2.4. Clearly, both mod-CS and mod-CS-Add-LS-Del significantly
outperform noisy ¢; (simple CS). This is because for ¢ > 0, the number of measurements,
ny = 57 is too small for a 200 length 20 sparse signal. When ayin = 7Tmin(dmin) = 7
is large enough, both mod-CS and mod-CS-Add-LS-Del are stable at 5% error or less.
When 7 is reduced, mod-CS becomes unstable. Of course when r is reduced even further
to r = 0.2, both become unstable (not shown). If Fig 2.5, we show results for the case
when A; changes with time and all other parameters are the same as Fig 2.4 (a). Clearly
in this case, the performance of both mod-CS and mod-CS-add-LS-del has improved
significantly.

In Fig. 2.6, we plot the average value of c,qq+ for the simulations corresponding to
Fig 2.5. As can be seen, this threshold is close to 4c = 4¢//n at all times.

For solving the minimization problems given in (2.1) and (2.2), we used the YALL1
software, which is provided in http://yalll.blogs.rice.edu/. Both the modified-CS algo-
rithms and noisy ¢; took roughly the same amount of time. For the results of Fig. 2.5,
when running the code in MATLAB on the same server, noisy ¢; needed 0.0466 seconds
per frame; mod-CS needed 0.0432 seconds per frame and mod-CS-Add-LS-Del needed
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Figure 2.4: Error Comparison with Fixed Measurement Matrix. “CS” in the figures
refers to noisy ¢y, i.e. the solution of (2.1) at each time.
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Figure 2.5: Error Comparison with Time Varying Measurement Matrices. “CS” in the
figures refers to noisy ¢y, i.e. the solution of (2.1) at each time.

0.0517 seconds. These numbers are computed by averaging over all 500 realizations and

over the 200 time instants per realization.
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Figure 2.6: Mean of a,qq over time.
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CHAPTER 3. BATCH SPARSE RECOVERY IN LARGE
AND STRUCTURED NOISE - MODIFIED PCP

3.1 Correctness Result

We first state the assumptions required for the result and then give the main result

and discuss it.

3.1.1 Assumptions

As explained in [32], we need that S is not low rank in order to separate it from Ljey-.
One way to ensure that S is full rank w.h.p. is by selecting the support of S uniformly
at random [32]. We assume this here too. In addition, we need a denseness assumption
on G and on the left and right singular vectors of L.

Let ny = max(ni,ne) and np) = min(ng, ny). Assume that following hold with a

constant p, that is small enough (we set its values later in Assumption 3.1.2).

max[|[G Upen"es|* < —22 (3.1)
i nylog” n)
max || Vige? < —2 (3.2)
i na log” ny

and

Ve Vi oo < | —2—. (3.3)
n(l) 10g n(l)
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3.1.2 Main result

We state the main result in a form that is slightly different from that of [32].
eliminates the parameter p and combines the bound on ur directly with the incoherence
assumptions (u is a parameter defined in [32] to quantify the denseness of U and V and
the incoherence between their rows) . We state it this way because it is easier to interpret
and compare with the result of PCP. In particular, the dependence of the result on n(y)
is clearer this way. The corresponding result for PCP in the same form is an immediate

corollary:.

Theorem 3.1.1. Consider the problem of recovering L and S from M using partial
subspace knowledge G by solving modified-PCP (1.8). Assume that §, the support set of

S, is uniformly distributed with size m satisfying
m < 0.4psninsg (3.4)

Assume that L satisfies (3.1), (3.2) and (3.3) and ps, p,, are small enough and ny,ns
are large enough to satisfy Assumption 3.1.2 given below. Then, Modified-PCP (1.8)

with A =1/ V) recovers S and L exactly with probability at least 1 — 23n(_1§0
Assumption 3.1.2. Assume that ps, p, and ni,ny satisfy:

(a) p, <min{1074 7.2483 x 10~°Cy;*

(b) ps = min{l — 1.5b1(p,),0.0156} where by(p,) := max {GOpr, 11001pi/2,0.11}

(¢) ny > max {exp(0.5019p,), exp(253.9618Cy: p, ), 1024}

(d) n(g) Z 100 log2 n(l),

(e) (n1+ng)!/6 10.5

log(n1+n2) > (ps)1/6(1—5.6561,/ps)’

() 2
(f) 5ooiogrf(1> 1/p;
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where Co1, Cog are numerical constants from Lemma B.0.6 ([63, Theorem 4.1]) and Lem-
ma B.0.8 ([63, Theorem 6.3]) respectively. Their expressions were not specified in the

original paper.

Proof: 'We prove this result in Sec 3.3.

3.1.3 Discussion w.r.t. PCP

The PCP program of [32] is (1.8) with no subspace knowledge available, i.e. Gpcp =
[ ] (empty matrix). With this, Theorem 3.1.1 simplifies to the corresponding result for
PCP. Thus, Upew,pcp = U and Vyew,pocp = V and so PCP needs

Prit(2)

max |[U'e;||* < ———5~—, (3.5)
i nylog” n)

max | Ve |2 < 0 (3.6)
i ng log” n(y)

and

* pT
n(l) log n(l)

Notice that the second and third conditions needed by modified-PCP, i.e. (3.2) and
(3.3), are always weaker than (3.6) and (3.7) respectively. They are much weaker when
Tnew 18 small compared to r. When regn = 0, range(G) = range(Uy) and so the first
condition is the same for both modified-PCP and PCP. When 74y, > 0 but is small, the
first condition for modified-PCP is slightly stronger. However, as we argue below the
third condition is the hardest to satisfy and hence in all cases except when 7oy, is very
large, the modified-PCP requirements are weaker. We demonstrate this via simulations
and for some real data in Sec 3.4.2 (see Fig 3.1b and Fig 3.3b) and 3.4.5.

The third condition constrains the inner product between the rows of two basis
matrices U and V while the first and second conditions only constrain the norm of

the rows of a basis matrix. On first glance it may seem that the third condition is
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implied by the first two using the Cauchy-Schwartz inequality. However that is not

the case. Using Cauchy-Schwartz inequality, the first two conditions only imply that

T . . . L. .
[UVH|eo < L \l/p @ which is looser than what the third condition requires.
() log”nq) lognq,

3.2 Online Robust PCA

Consider the online / recursive robust PCA problem where data vectors y, := s; + £;
come in sequentially and their subspace can change over time. Starting with an initial
knowledge of the subspace, the goal is to estimate the subspace spanned by £, €5, ... ¥4,
and to recover the s;’s. Assume the following subspace change model introduced in [44]:
£, = Pyl.5, where Py = P; for all t; <t < tj44, j = 0,1,...J. At the change
times, P; changes as P; = [(P;_1R; \ Pjold) Pjnew] Where Pj ey iS @ 1 X ¢jpew basis

matrix that satisfies P} ., P;j—1 = 0; R; is a rotation matrix; and P;qq is a n X ¢jo1q

*
j,new
matrix that contains a subset of columns of P;_1R;. Also assume that ¢;,ew < ¢ and
Zj(c%new — Cjold) < caif. Let rj = rank(P;). Clearly, 7; = 71 + Cjnew — Cjola and so

T < Tmax = To + Cdif-

For the above model, the following is an easy corollary.

Corollary 3.2.1 (modified-PCP for online robust PCA). Let M := [y, ¥¢,41, - - - Yt;41-1)
Lj = [Etj,ﬂtﬁl, Ce etj+1,1], Sj = [Stjvstj+17 Ce Stj+1*1] and let qu” = [Ll, LQ, Ce L]] and

Ssun = [S1,S2,...S,]. Suppose that the following hold.
1. Sy satisfies the assumptions of Theorem 3.1.1.

2. The initial subspace range(Py) is exactly known, i.e. we are given P, with mnge(f’o) =

range(Py).

3. Forall j =1,2,...J, (3.1), (3.2), and (3.3) hold with ny = n, ny = tj;1 —1

el
G =P,_1, Usew = Pjpew and Ve, being the matriz of right singular vectors of

Lnew — (I — Pj—lpj—l)Lj'
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4. We solve modified-PCP at everyt = t;11, using M = M, and with G = G; = lsj,l
where f’j_l 18 the matrix of left singular vectors of the reduced SVD of f;j_l (the

low-rank matriz obtained from modified-PCP on M,_;). Att =t we use G = Po.

Then, modified-PCP recovers Sp, Ly exactly and in a piecewise batch fashion with

probability at least (1 — 23n~10)7.

Proof. Denote by © the event that range(Py) = range(Py). For j = 1,2,....J, denote by
©, the event that the program (1.8) succeeds for the matrix M = M, i.e. S; and L; are
exactly recovered. Clearly, ©; also implies that range(f’j) = range(P;). Using Theorem
3.1.1 and the model, we then get that probability P(6,|0g,©1,...0;_1) > 1 —23n71.
Also, by assumption, P(60y) = 1. Thus by chain rule, P(©¢,©1,0,,---,0,) > (1 —

23n-10)7. 0

Discussion w.r.t. PCP. For the data model above, two possible corollaries for PCP

can be stated.

Corollary 3.2.2 (PCP for online robust PCA). If Sy satisfies the assumptions of The-
orem 3.1.1 and if (3.1), (3.2), and (3.8) hold with ny =n, ny =ty;1 —t1, Gpep =[],
Usewrcr = U = [Py, Procw, - - - Prnew and Ve, pep = V being the right singular vec-
tors of Ly = [Ly, Lo, ... L], then, we can recover Ly, and Sy exactly with probability

at least (1 — 23n~1%) by solving PCP (1.1) with input My,y. Here My := Ly + Spu-

When we compare this with the result for modified-PCP, the second and third con-
dition are even more significantly weaker than those for PCP. The reason is that Ve
contains at most ¢ columns while V contains at most ry + Jc columns. The first con-
ditions cannot be easily compared. The LHS contains at most rmax + ¢ = 1o + cgif + ¢
columns for modified-PCP, while it contains rq+ Jc¢ columns for PCP. However, the RHS
for PCP is also larger. If t; 11 —t; = d, then the RHS is also J times larger for PCP than

for modified-PCP. The above advantage for mod-PCP comes with two caveats. First,
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modified-PCP assumes knowledge of the subspace change times while PCP does not need
this. Secondly, modified-PCP succeeds w.p. (1 — 23n710)7 > 1 — 23Jn~19 while PCP

0

succeeds w.p. 1 —23n71%.  Alternatively if PCP is solved at every ¢ = t;,; using M},

we get the following corollary

Corollary 3.2.3 (PCP for M;). Solve PCP, i.e. (1.1), att = t;41 using M;. If Spu
satisfies the assumptions of Theorem 3.1.1 and if (3.1), (3.2), and (3.3) hold with ny = n,
ne =tjy1 —t;, Gpep =[], Unewpcr = Pj and Ve, pop = V; being the right singular
vectors of L for all j = 1,2,...,J, then, we can recover Ly and Spy exactly with

probability at least (1 — 23n~19)7.

When we compare this with modified-PCP, the second and third condition are sig-
nificantly weaker than those for PCP when ¢;new << 7;. The first condition is exactly
the same when ¢;,q = 0 and is only slightly stronger as long as ¢; o4 < 7.

Discussion w.r.t. ReProCS. 1In [21, 64, 44], Qiu et al studied the online / recur-
sive robust PCA problem and proposed a novel recursive algorithm called ReProCS.
With the subspace change model described above, they also needed the following “slow

subspace change” assumption: ||PF _ £:|| is small for sometime after ¢; and increases
J J

gradually. Modified-PCP does not need this. Moreover, even with perfect initial sub-
space knowledge, ReProCS cannot achieve exact recovery of s; or £; while, as shown
above, modified-PCP can. On the other hand, ReProCS is a recursive algorithm while
modified-PCP is not; and for highly correlated support changes of the s;’s, ReProCS
outperforms modified-PCP (see Sec 3.4). The reason is that correlated support change
results in S also being rank deficient, thus making it difficult to separate it from Ly, by
modified-PCP.

Discussion w.r.t. the work of Feng et al. Recent work of Feng et. al. [65, 66] provides
two asymptotic results for online robust PCA. The first work [65] does not model the

outlier as a sparse vector but just as a vector that is “far” from the low-dimensional data
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subspace. In [66], the authors reformulate the PCP program and use this to develop a

recursive algorithm that comes “close” to the PCP solution asymptotically.

3.3 Proof of Theorem 3.1.1: Main Lemmas

Our proof adapts the proof approach of [32] to our new problem and the modified-
PCP solution. The main new lemma is Lemma 3.3.7 in which we obtain different and
weaker conditions on the dual certificate to ensure exact recovery. This lemma is given
and proved in Sec 3.3.5. In addition, we provide a proof for two key statements from [32]
for which either a proof is not immediate (Lemma 3.3.1) or for which the cited reference
does not work (Lemma 3.3.2). These lemmas are given below in Sec 3.3.1 and proved in
the Appendix.

We state Lemma 3.3.1 and Lemma 3.3.2 in Sec 3.3.1. We give the overall proof
architecture next in Sec 4.4. Some definitions and basic facts are given in Sec 4.5.2
and 3.3.3. In Sec 3.3.5, we obtain sufficient conditions (on the dual certificate) under
which S, L.y is the unique minimizer of modified-PCP. In Sec 3.3.6, we construct a dual
certificate that satisfies the required conditions with high probability (w.h.p.). Here, we
also give the two main lemmas to show that this indeed satisfies the required conditions.
The proof of all the four lemmas from this section is given in the Appendix.

Whenever we say “with high probability” or w.h.p., we mean with probability at least

1 -0y’

3.3.1 Two lemmas

Lemma 3.3.1. Denote by Py,is and Pp., the probabilities calculated under the uniform
and Bernoulli models and let “Success” be the event that (Lyew, S, L*G) is the unique

solution of modified-PCP (1.8). Then

_ 2 mo
2n1na€g + €o.
ninsg

P Uniftme) (Success) > Pper(py) (Success) — e , where pg =
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The proof is given in Appendix B.0.11. A similar statement is given in Appendix A.1

of [32] but without a proof. The expression for the second term on the right hand side
2nqngel
given there is e %o which is different from the one we derive.

Lemma 3.3.2. Let E be a ny X ny random matriz with entries i.i.d. (independently

identically distributed) as

L wop. ps/2,

Ei; =40, w. p. 1 — ps, (3-8)
-1, w. p. ps/2.
If ps < 0.03 and (natna) /0 10.5 then

log(n1+nz2) (ps)t/6(1-5.6561,/ps)’

P([E[ > 05,/) < n;l"

The proof is provided in Appendix B.0.12 and uses the result of [67]. In [32], the
authors claim that using [68], || E|| > 0.25, /) w.p. less than n(_so. While the claim is
correct, it is not possible to prove it using any of the results from [68]. Using ideas from

[68], one can only show that the above holds when ny) is upper bounded by a constant

times log n(1) (see the Appendix of [69]) which is a strong extra assumption.
3.3.2 Proof architecture

The proof of the theorem involves 4 main steps.

(a) The first step is to show that when the locations of the support of S are Bernoul-
li distributed with parameter p, and the signs of S are i.i.d +1 with proba-

independent from the locations), and all the other assumptions
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on L, nq,ng, ps, pr in Theorem 3.1.1 are satisfied, then Modified-PCP (1.8) with
A = 1/,/nqy recovers S exactly (and hence also L = M — S) with probability at

~10
least 1 — 22n(1) .

(b) By [32, Theorem 2.3], the previous claim also holds for the model in which the signs
of S are fixed and the locations of its nonzero entries are sampled from the Bernoulli
model with parameter ps/2, and all the other assumptions on L, ny, ns, ps, pr from

Theorem 3.1.1 are satisfied.

(c) By Lemma 3.3.1 with ¢y = 0.1ps5, mg = |0.4psninz], since niny > 500logn; /p?
(Assumption 3.1.2(f)), the previous claim holds with probability at least 1 — 23n(’1§0
for the model in which the signs of S are fixed and the locations of its nonzero
entries are sampled from the Uniform model with parameter mg, and all the other

assumptions on L, ny, ng, ps, pr from Theorem 3.1.1 are satisfied.

(d) By [32, Theorem 2.2|, the previous claim also holds for the model in which the
signs of S are fixed and the locations of its nonzero entries are sampled from the
Uniform model with parameter m < mg = 0.4psnins, and all the other assumptions

on L, ny, no, ps, pr from Theorem 3.1.1 are satisfied.

Thus, all we need to do is to prove step (a). To do this we start with the KKT
conditions and strengthen them to get a set of easy to satisfy sufficient conditions on
the dual certificate under which Ly, S is the unique minimizer of (1.8). This is done
in Sec 3.3.5. Next, we use the golfing scheme [70, 32] to construct a dual certificate that

satisfies the required conditions (Sec. 3.3.6).

3.3.3 Basic facts

We state some basic facts which will be used in the following proof.
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Definition 3.3.3 (Sub-gradient [71]). Consider a convex function f : O — R on a

convez set of matrices Q. A matriz 'Y s called its sub-gradient at a point Xy € Q if
J(X) = f(Xo) > (Y, (X = X)).
for all X € Q. The set of all sub-gradients of f at Xq is denoted by 0f(Xo).

It is known [72, 73] that

O||Lnewll+ = {Unew View + W : Pr, W =0, ||W] < 1}.

new
and

3|IS|l = {F : BoF = sgn(S), | Flx < 1}.

Definition 3.3.4 (Dual norm [39]). The matriz norm || - ||o is said to be dual to matric

norm || - || if, for all Yy € R™*"™ ||Y1[|o = supjy, | <1(Y1, Y2).

Proposition 3.3.5 (Proposition 2.1 of [74]). The following pairs of matriz norms are

dual to each other:

o |-l and || - [loo
o |-l and || - |I;
o ||-llr and|-|r

For all these pairs, the following hold.
LY, Z2) < Y[l 2o
2. Fizing any Y € R™*"2  there exists Z € R™*™ (that depends on Y ) such that

(Y, 2) = [[Ylal Zlo-

3. In particular, we can get (Y, Z) = ||Y|1]| 2|l by setting Z = sgn(Y), we can get
(Y, Z) =Y Z|| by setting Z = Uy V3 where Uy Xy V. is the SVD of Y, and
= [[Y[|r||Z]|F by letting Z2 =Y.
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For any matrix Y, we have
Y7 = tr(Y™Y) Z Yyl* < (Z [Yil)* = 1Y
and

Y [E = te(Y"Y) ZU < QoY) =Y

Let T be the linear space of matrices with column span equal to that of the columns of
P, and row span equal to that of the columns of P, where P, and P, are basis matrices.

Then, for a matrix M,
PriM = (I - P,P;)M(I — P,P3) and PxM = M — Py M.

Let T be the linear space of matrices with column span equal to that of the columns of
P,. Then,
PyiM = (I-P;P))M and PrM = P, PM

For a matrix xy* where x and y are vectors,
Iy ™[I = Iy lI*-
If an operator A is linear and bounded, then [75]

lA*A]l = [ AJI*.

3.3.4 Definitions

Here we define the following linear spaces of matrices.
Denote by I' the linear space of matrices with column span equal to that of the
columns of G, i.e.

= {GY*, Y € R™=*76}, (3.9)

and by I'* its orthogonal complement.
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Define also the following linear spaces of matrices

Tnew = {UneWYI + YQV*

new?’

Y]. c Rn2><7"new’ Y2 c Rnl ><7"new}’

II := {[G UneW]YT + YQV* Y, € RnZX(TG‘i"T'neW)’Yz c R™ Xrnew}’

Notice that Ty U = 11.

Remark 3.3.6. For the matriv e;e}, together with (3.1) and (3.2), we have

IPreeie} |
= (I =[G Upe[G Upeu])eil (T = Ve V7,

new)ej”2 (310)
> (1= p,/log’ nay)?,

where p,/log?nay < 1 as assumed. Using |Pue;el||3. + |[Prreel]|% = 1, we have

20,
IPreet|[r < || —ar—. (3.11)
log” n()

We modify Lemma 2.5 of [32] to get the following lemma which gives us sufficient

3.3.5 Dual certificates

conditions on the dual certificate needed to ensure that modified-PCP succeeds.
Lemma 3.3.7. If |PoPr|| < 1/4, A < 3/10, and there is a pair (W, F) obeying
UnewView + W = A(sgn(S) + F + PoD)

withPuW = 0, |[W|| < & PoF = 0, |F|lo < 2, and |[PoD||r < L, then (Lpew, S, L*G)

is the unique solution to Modified-PCP (1.8).

Proof. Any feasible perturbation of (Lyey, S, L*G) will be of the form
(Lyew + H1, S — H,L"G + H,), with H; + GH; = H.

Let G, be a basis matrix that is such that [G G| is a unitary matrix. Then, H; =
xG*"H — GHJ}. Notice that
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o Liow=G,G Ly and G, GTH = Pr. H.
e For any two matrices Y; and Yo,
GLY1 +GYsl. > |GLY .

where equality holds if and only if Yy = 0. To see why this holds, let the full SVD

SVD

of Y, Y, be Y, 0,3,V and Y, YD Q,3, V3. Since [G G| is a unitary

matrix, G Y1+ GYs 2 [G, O, GOy [ ] [Vy Vo]*. Thus, |G Y1+ GYsl. =

trace(X;) + trace(Xsy) > trace(X;) = |G LY ||« where equality holds if and only if

3o = 0, or equivalently, Yo = 0.
Thus,
||Lnew + Hl”*

= [|GL(G] Lnew + G H) + G(G™H — Hy) ||

> ||GJ-(Gj_Lnew + Gj_H)H* = ”Lnew + PI‘J-H”* (312)

where equality holds if and only if Hy = G*H
Recall that T UT' = II. Choose a W, so that (W, P H) = ||PrHJJ.[[W,]||. This

is possible using Proposition 3.3.5. Let
Wo =P W, /[[W,ll.

Thus, W satisfies Pz, Wy = 0 and ||[Wy|| < 1 and so it belongs to the sub-gradient

set of the nuclear norm at L,.,. Also,

<W0,]P>FLH> ||W || <PHLWa,PFiH>
1
||W || <Wa,PHLPFiH>
1
”W || <Wa>PHlH> ”PHLH”*
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Let Fy = —sgn(Po1H). Thus, PoFy = 0, ||Fyl/cc = 1 and so it belongs to the sub-

gradient set of the 1-norm at S. Also,
(Fo,H) = (Fo,Po.H) = —[[PoH1.
Thus,

| Linew + Hill« + Al|S — H||y
ZHLneW + IEDI'J-I_IH* + >‘||S - H||1
(using (3.12))

> || Liewll« + AlS]l1 + (Upew V>

new

+ Wy, Pr H)
— A(sgn(S) + Fo, H)
(by definition of sub-gradient)

=[Lnewl+ + AlISy + [P Hl| + Al[Po Hy

+ <Unew\/v>,<

new — Asgn(S), H)
(using Wy and F as defined above)
2| Lnewll« + AlIS[y + [[Prre Hl. + Af[Pou Hly
— max([[WI|, [Flloe) (P HI[. + Al[Po: Hll1) + A{PoD, H)
(by the lemma’s assumption and Proposition 3.3.5)
> Lol + AISI + 7o (P Hll + APg. ], )
~ 2 BoH

1
(by Proposition 3.3.5 and assumption ||PoD||r < 4_1)

Observe now that

|BoH] - < [BoPnHlr + [Py H]
1
< I Hp + [P H]

1 1
< JIBeHllF + 7 PorHllp + [|Pre H| -
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and, therefore,

1 4
IPoH|lr < ||PorHilp + 2 |[PucH|

1 4
< < [[PorHjy + 2 ||PrHI|,
3 3
In conclusion,

[Lonew + ProHll + Al[S — Hy

1A A
> Lo+ NS + (55 = 5B Hll. + 5 |Po-H)

> ”LneWH* + >‘||S||1

The last inequality holds because ||PoPr|| < 1 and this implies that IINQ = {0} and so
at least one of Py H or Pqi H is strictly positive for H # 0. Thus, the cost function is
strictly increased by any feasible perturbation. Since the cost is convex, this proves the

lemma. O

Lemma 3.3.7 is equivalently saying that (Lpew,S,L*G) is the unique solution to
Modified-PCP (1.8) if there is a W satisfying:

p

W c 11+,

W] <9/10,
(3.13)

1Po(Unen Vi, — Asn(S) + W)l < A/4,

+ W)l < 9A/10.

”PQl (Unewvzew
\
3.3.6 Construction of the required dual certificate

The golfing scheme is introduced by [76, 70]; here we use it with some modification-
s similar to those in [32] to construct dual certificate. Assume that © « Ber(p,) or

equivalently, Q¢ «» Ber(1 — py).
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Notice that 2° can be generated as a union of jy i.i.d. sets {Qj};:o:l, where Q; (o

Ber(q),1 < j < jo with g, jo satisfying ps = (1 — ¢)?°. This is true because
P((i,) € Q) =P((i,7) MU U~ Q) = (1 —g)".

As there is overlap between (s, we have ¢ > (1 — p;)/Jo.

Let W = WL + W¥ where WL, W¥ are constructed similar to [32] as:

e Construction of WL wvia the golfing scheme. Let Yy = 0,

Y;=Y; 1 +q Po,Pu(Unew View — Y1),

and W =P, Y,,. Notice that Y; € Q*.

o Construction of W wvia the method of least squares. Assume that |PoPp|| <
1/4. We prove that this holds in Lemma 3.3.9 below. With this, ||PoPpPq| =
|[PoPr||? < 1/16 and so ||Pg — PoPpPq|| > 1 — 1/16 > 0. Thus this operator,
which maps the subspace € onto itself, is invertible. Let (Pg — ]PQ]PH]P)Q)_l denote

its inverse and let
W5 = AP (Pg — PoPpPq) 'sgn(S).
Using the Neumann series, notice that [32]

(Po — PoPnPo) 'sgn(S) = ) _(PaPuPq)*sgn(S).

k>0

Thus [32],
PoW* = Asgn(S).

This follows because (P — PolPpPg) is an operator mapping € onto itself, and so
(PQ — PQPHPQ)_ISgn(S) = ]P)Q(]P)Q — PQPHPQ)_ISgn(S) L With thiS, ]P)QWS = )\]P)Q(I —
]PH)]P)Q(]P)Q — IP’QIP’H]P’Q)Asgn(S) = )\(]P)Q — PQPHPQ)(PQ — PQPHPQ)ilng(S) = Asgn(S)

1 TP

he Neumann series
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Clearly, W = W% + W¥ is a dual certificate if

;

W + WS|| < 9/10,

IPQ(Upew View + WD) F < A/4, (3.14)

new

[Pos (Unew V7

new
\

+ W+ W) < 92/10.

Next, we present the two lemmas that together prove that (3.14) holds w.h.p..

Lemma 3.3.8. Assume Q ~ Ber(ps). Let jo = 1.3[lognay|. Under the other assump-

tions of Theorem 3.1.1, the matriz W* obeys, with probability at least 1 — lln(_ﬁo,
(a) [[WH] < 1/16,

(b) HPQ (UnewV*

new

+ WhH)||r < M/4,

(¢) |IPoi(Upew Ve

new

+ W)l < 2)/5.
This is similar to [32, Lemma 2.8]. The proof is in the Appendix.

Lemma 3.3.9. Assume Q0 ~ Ber(ps), and the signs of S are independent of Q0 and
1.1.d. symmetric. Under the other assumptions of Theorem 3.1.1, with probability at

least 1 — lln(_ﬁo, the following is true
(a) |[PaPp|| < 1/4 and so Wg constructed earlier is well defined.
(b) |IW=] < 67/80,
(c) IPor W3 |s < A/2.

This is similar to [32, Lemma 2.9]. The proof is in the Appendix.
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Table 3.1: Speed comparison of different algorithms. Sequence length refers to the length of
sequence for training plus the length of test sequence.

DataSet | Image Size | Sequence Length | mod-PCP | PCP | ReProCS | GRASTA RSL DEC | GOSUS [77]
Yale Face | 122 x 160 48 + 24 2.7 sec 9.8 sec 0.5 sec 50.2 sec | 141.7 sec | 21.3 sec

Lake 72 x 90 1420 + 80 2.2 sec 1.7 sec 9.3 sec | 338.7sec | 26.7 sec
Fig. 3.6a 256 x 1 20042400 2.7 sec 6.2 sec | 12.0 sec 5.7 sec 25.4 sec 576.9 sec
Fig. 3.6b 256 x 1 20048000 9.7 sec 18.9 sec | 24.8 sec 12.6 sec | 67.7 sec 1735.6 sec
Fig. 3.6¢ 256 x 1 20048000 13.1sec | 18.7 sec | 26.1 sec 12.7 sec | 74.8 sec 1972.5 sec

3.4 Solving The Modified-PCP Program And Experiments

With It

We first give below the algorithm used to solve modified-PCP. Next, we give recovery
error comparisons for static simulated and real data. Finally we show some online robust

PCA experiments, both on simulated and real data.

3.4.1 Algorithm for solving Modified-PCP

We give below an algorithm based on the Inexact Augmented Lagrange Multiplier
(ALM) method [45] to solve the modified-PCP program, i.e. solve (1.8). This algorithm
is a direct modification of the algorithm designed to solve PCP in [45] and uses the idea
of [46, 47] for the sparse recovery step.

For the modified-PCP program (1.8), the Augmented Lagrangian function is:

L<i‘newa gaYa T) = ||fJnewH* + /\”SHI + <Y7 M - ]:new - S
~GX) 4 M ~ Ly — § - GX'|3.

Thus, with similar steps in [45], we have following algorithm. In Algorithm 3, Lines 3
~ ~ ~ ~ ~ ~ T ~
solves Sy1 = arg min || Lyew ||« + A|[S]|1 + (Y5, M — Lyewr — S — GXJ) + B IM —Lpewx —
S
S — GXZ||%; Line 4-6 solve [Liewrr1, Xpr1] = arg min || Lnew|ls + Al|Sgsalls + (Y5, M —

new s

2. The soft-thresholding operator is

Lnew - Sk-ﬁ-l - GX*> + gHM - I:new - Sk-i—l - GXZ
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Algorithm 3 Algorithm for solving Modified-PCP (1.8)

Input: Measurement matrix M € R™*"2 X\ = 1/y/max{ns,ns}, G.
1: Yo = M/ max{||[M||,||M||oc/A}; So = 0; 70 > 0; v > 1; k = 0.
2: while not converged do )

30 Sip1 =6, 1M — GXj — Lyews + 7 Y.

(U,%, V) =svd((I — GG*)(M — Siy1 + 77 1Y%));

Lot = U, A[SVT.

Xpi1 = G*(M = Spq + 7, 'Yy N

Y1 =Ye+7%(M —Ski1 — Lpewsrt1 — GXpp1).

Trr1 = min(v7g, 7).

9: k<« k+1.
10: end while
Output: ﬁnew = ﬂnew,k, S = Sk, L=M-— S;.

defined as
r—e¢, if x >¢
G fz] = x+e ifx < —¢ (3.15)
0, otherwise,

Parameters are set as suggested in [45], i.e., 79 = 1.25/|M|,v = 1.5,7 = 1077 and

iteration is stopped when ||M — ng — I:new’kH — GXk+1]\F/\|M\|F <1077,

3.4.2 Simulated data

The data were generated as follows. For the sparse matrix S, we generated a support
set of size m uniformly at random and assigned values +1 with equal probability to
entries in the support set. We generated the matrix [G U,e,] by orthonormalizing an
N1 X (7o + Textra + Tnew) Matrix with entries i.i.d. Gaussian N(0,1/n;); we set Uy as the
first ro columns of this matrix, Gegira as the next regra columns and U, as the last
Tnew columns. Then, we set G = [Ug, Gextral. This matrix has rg = 79 + Fextra columns.
We generated a matrix Yy of size rg X d and a matrix Y of size (7g 4 Tnew) X 1o with
entries i.i.d. N(0,1/n1). We set Mg = GY as training data and M = [Ug U,y Y2 +S.
The matrix Mg is n; X d and the M is n; x ny. We computed G as the left singular

vectors with nonzero singular values of M and this was used as the partial subspace
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knowledge for modified-PCP. For modified-PCP, we solved (1.8) with M and G using
Algorithm 3. For PCP, we solved (1.1) with M using the Inexact Augmented Lagrangian
Multiplier algorithm from [45]. This section provides a simulation comparison of what
we conclude from the theoretical results. In the theorems, both modified-PCP and PCP
use the same matrix M, but modified-PCP is given extra information (partial subspace
knowledge). In the first set of simulations, we also compare with PCP when it is also
given access to the initial data Mg, i.e. we also solve PCP using [Mg M]|. We refer to
this as PCP([Mqg M]).

Sparse recovery error is calculated as ||S — S||%/||S||% averaged over 100 Monte Carlo
trials. For the simulated data, we also compute the smallest value of p, required to
satisfy the sufficient conditions — (3.1), (3.2), (3.3) for mod-PCP and (3.5), (3.6), (3.7)
for PCP. We denote the respective values of p, by p,([G Upew]); Pr(View); Pr(Unew View),
pr(U), pr(V) and p,(UV). Also,

Pr (mOd‘PCP) = maX{pr ( [G Unew] )7 Pr (Vnew)> Pr (Uneanew)}

and

pr(PCP) = max{p,(U), p,(V), p-(UV)}.

In Fig. 3.1, we show comparisons with increasing number of extra directions rexgya.
We used n; = 200, d = 200, ny = 120, m = 0.075ning, r = 20, 1o = 0.97 = 18,
Thew = 0.1r = 2 and 7exra ranging from 0 to ny — r = 100. As we can see from Fig.
3.1a, for rexra < 60, mod-PCP performs better than PCP with or without training
data M. Fig. 3.1b shows that mod-PCP allows a larger value of p, (needs weaker
assumptions) than PCP. Notice that the recovery error of PCP([M¢ M)]) is larger than
that of PCP(M). This is because the rank of [M M] is larger than that of M because
of the extra directions. In the rest of the simulations, we only compare with PCP(M).

In Fig. 3.2, we show comparisons with increasing number of new directions ryey

(or_equivalently decreasing 19 = 7 — Tpew). We used ny = 200, d = 200, ny = 120,
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(a) Recovery result comparison (b) Comparing the value of p,

Figure 3.1: Comparison with increasing 7extra (1 = 200, d = 200, ny = 120,
m = 0.075ning, r = 20, ro = 18, Tpew = 2). In (b), we plot the value of p, need-
ed to satisfy (3.1), (3.2), (3.3) and (3.5), (3.6), (3.7). We denote the respective val-
ues of pr by pr([G Unew])s pr(View), pr(UnewView), pr(U), pr(V) and pr(UV).  No-
tice that p,(UV) is the largest, i.e. (3.7) is the hardest to satisfy. Notice also that
pr(mod-PCP) = max{p,([G Unpew]); 2r(Vnew), or (Unew Vnew)} is significantly smaller than
pr(PCP) = max{p,(U), pr(V), pr(UV)}.

m = 0.075n1n9, 7 = 30, Textra = D and 7y ranging from 1 to 20 (thus ry ranges from 29

to 10). As we can see, mod-PCP performs better than PCP.

AN
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&

Figure 3.2: Comparison with increasing rew (n1 = 200, d = 200, ny = 120, m = 0.075n1n2,
r =30, Textra = D)-

In Fig 3.3, we show a comparison for increasing number of columns nsy. For this
figure, we used ny; = 200,d = 60, rg = rg = 18, ryew = 2, m = 0.075n1n4, and ny ranging
from 40 to 200. Notice that this is the situation where ny < ny so that np) = n, and
n¢y = ny. This situation typically occurs for time series applications, where one would
like to use fewer columns to still get exact/accurate recovery. We compare mod-PCP
and PCP. As we can see from Fig. 3.3a, PCP needs many more columns than mod-PCP

for exact recovery. Here we say exact recovery when ||S — S||2/||S||% is less than 1076
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Fig. 3.3b is the corresponding comparison of p,(mod-PCP) and p,(PCP) for this dataset

and the conclusion is similar.

— ° 10° K P UneaVoew) | —K— 2 (UV) 1
= B r((6 Vo) |3 0(V)
i %%%% pr(Vaew) (V)
2 . o
= —5% 10 H%%HHH%%T
@ ‘ —¥ mod-PCP o
| \ PCP(M) o X
@ oo || [£RePros w! 5 TIEUOtssssssesad
E || CONTIN0000000¢
2 [000000000000000¢
-15 10 50 100 150 200
50 100 150 200 Number of Columns
Number of Columns
(a) Recovery result comparison (b) Comparing the value of p,

Figure 3.3: Comparison with increasing ng (n1 = 200,d = 60, r¢ = rog = 18, Thew = 2,m =
0.075n1m32).

As pointed out by an anonymous reviewer, notice that there are jumps in Fig 3.1a,
3.2, 3.3a. The reason for these is as follows. The guarantees for modified-PCP (and
also for PCP) hold only with high probability. So there is always a small chance that
modified-PCP fails. In these figures we plot the Monte Carlo based normalized mean
squared error (NMSE). The averaging is done over 100 realizations. This number is small
enough that even if modified-PCP does not give exact recovery and has larger recovery
error for one out of all the realizations, it increases the NMSE by a significant amount.
This is what happened in Fig 3.1a for rem = 20 or in Fig 3.2 for 7y, = 11 or 14 and in
Fig. 3.3a for ns just large enough for exact recovery. Notice that, in all of these figures,
the “bad” case happens just before the phase transition from near-zero error to large
error. These are precisely the cases for which the probability of exact recovery is smaller
and hence there is a higher chance of modified-PCP failing.

Also, because of the above reason, the phase transition plots given next are more
useful in evaluating algorithms such as modified-PCP or PCP that work with high prob-
ability. The phase transition plots will also have a jump for the above case, except that
the jump will be from probability of failure = zero to probability of failure = 0.01 (in
case of one “bad” case out of 100) and back to zero. The jump from 0 to 0.01 and back

t0-0-is-so-small-that-it-is-not even visible.
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We generated phase transition plots similar to those for PCP in [32]. We used the
approach outlined in [32] to generate L, S and M i.e. welet ny =ny =400 and L = XY™,
where X and Y are independent ny x r i.i.d. A(0,1/n;) matrix and independent ng X r
i.i.d. (0,1/ny) matrices respectively. The support Q of S is of size m and uniformly
distributed and for (,j) € , P(S;; = 1) = P(S;; = —1) = 1/2. For mod-PCP, we
used Tpew = [0.157], Textra = |0.157] and we generated G as follows. We let Uy be the
first (r — Thew) columns of the orthonormalized X, and we generated Gexira as the first
Textra cOlumns of the orthonomalized (I — UU*)X;. Here U is the matrix of left singular
vectors of L and X is a ny X 27exyra 1.1.d. N(0,1/n;) matrix. We set G = [Ug, Gexiral-

To show the advantages of mod-PCP with less columns, we also did a comparison
with the same parameters above but with ny = 400,n, = 200. Fig. 3.4 shows the
fraction of correct recoveries across 10 trials (as was also done in [32]). Recoveries are
considered correct if ||L — L||z/|| L]z < 1073, As we can see from Fig. 3.4, mod-PCP is
always better than PCP since 7y, and reg;s are small. But the difference is much more

significant when ny = n;/2 than when ny = ny.

o1 0z o3 o4 01 o0z o3
r/ny r/m

0z 08 0z 03
r/ny r/m

(a) mod-PCP, (b) PCP, (c) mod-PCP, (d) PCP,
ng = 400 ng = 400 ng = 200 ng = 200

Figure 3.4: Phase transition plots with 76y = [0.157], Textra = [0.157], ny = 400

3.4.3 Real data (face reconstruction application)

As stated in [32], robust PCA is useful in face recognition to remove sparse outliers,
like cast shadows, specularities or eyeglasses, from a sequence of images of the same face.
As explained there, without outliers, face images arranged as columns of a matrix are

known _to _form an _approximately low-rank matrix. Here we use the images from the
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Figure 3.5: Yale Face Image result comparison
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Figure 3.6: NRMSE of sparse part comparison with online model (n = 256, J = 3, ro = 40,
to = 200, Cjnew =4, Cjola =4, j =1,2,3)
Yale Face Database [78] that is also used in [32]. Outlier-free training data consisting
of face images taken under a few illumination conditions, but all without eyeglasses, is
used to obtain a partial subspace estimate. The test data consists of face images under
different lighting conditions and with eyeglasses or other outliers. For test data, the goal
is to reconstruct a clear face image with the cast shadows, eyeglasses or other outliers
removed. Thus, the clear face image should be a column of the estimated low-rank
matrix while the cast shadows or eyeglasses should be a column of the sparse matrix.

Each image is of size 243 x 320, which we reduce to 122 x 160. All images are re-
arranged as long vectors and a mean image is subtracted from each of them. The mean
image is computed as the empirical mean of all images in the training data. For the
training data, M, we use images of subjects with no glasses, which is 12 subjects out of
15 subjects. We keep four face images per subject — taken with center-light, right-light,

left-light, and normal-light — for each of these 12 subjects. Thus the training data matrix
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Mg is 19520 x 48. We compute G by keeping its left singular vectors corresponding to
99% energy. This results in rg = 38. We use another two face images per subject for
each of the twelve subjects, some with glasses and some without, as the test data, i.e.
the measurement matrix M. Thus M is 19520 x 24.

In the experiments, we compare modified-PCP with PCP [32] and ReProCS [21, 64]
and also with some of the other algorithms compared in [64]: robust subspace learn-
ing (RSL) [79], which is a batch robust PCA algorithm that was compared against in
[32], and GRASTA [80], which is a very recent online robust PCA algorithm. We also
compare against Dense Error Correction (DEC) [81, 82] since this first addressed this
application using ¢; minimization. To implement Dense Error Correction (DEC) [81, 82],

we normalize each column of Mg to get the dictionary (D), x4s, and we solve
(x;,8;) = argmin ||X||; + ||8]|1 subject to M; = Dx +§
X,

using YALL-1. Here M, is the ¢th column of M. The solution gives us §; and ¢; = Dx,.

For PCP and RSL, we use the test dataset only, i.e., M, which is a 19520 x 24
matrix, as the measurement matrix. DEC, ReProCS and GRASTA are provided the
same partial knowledge that mod-PCP gets. Fig. 3.5 shows 3 cases where mod-PCP
successfully removes the glasses into (S ); and gives the clearest estimate of the person’s
face without glasses as (L);. In the total 24 test frames, both mod-PCP and DEC remove
the glasses (for those having glasses) or remove nothing (for those not having glasses)
correctly in 14 of them, but the result of DEC has extra shadows in the face estimate.
The other algorithms succeed for none of the 24 frames. Both ReProCS and GRASTA
assume that the initial subspace estimate is accurate and “slow subspace change” holds,
neither of which happen here and this is the reason that neither of them work. RSL does

not converge for this data set because the available number of frames is too small. The

time taken by each algorithm is shown in Table 3.1.
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3.4.4 Online robust PCA: simulated data comparisons

For simulation comparisons for online robust PCA, we generated data as explained
in [83]. The data was generated using the model given in Section 3.2, with n = 256,
J =3, 19 =40, ty = 200 and ¢jnew = 4, ¢joia = 4, for each j = 1,2,3. The coefficients,
1.5« = Pj_ £, were i.i.d. uniformly distributed in the interval [—v,~]; the coefficients
along the new directions, 1.5 ey = P;newﬁt generated i.i.d. uniformly distributed in
the interval [—7Ynew, Vnew] (With & Ypew < ) for the first 1700 columns after the subspace
change and i.i.d. uniformly distributed in the interval [—v,~] after that. We vary the
value of Ypew; small values mean that “slow subspace change” required by ReProCS holds.
The sparse matrix S was generated in two different ways to simulate uncorrelated and
correlated support change. For partial knowledge, G, we first did SVD decomposition
on [€y,£s, -+ 4] and kept the directions corresponding to singular values larger than
E(2?)/9, where 2z ~ Unif[—Vyew; Ynew]. We solved PCP and modified-PCP every 200
frames by using the observations for the last 200 frames as the matrix M. The ReProCS
algorithm of [44, 83| was implemented with o = 100. The averaged sparse part errors
with three different sets of parameters over 20 Monte Carlo simulations are displayed
in Fig. 3.6a, Fig. 3.6b, and Fig. 3.6c, and the corresponding averaged time spent for
each algorithm is shown in Table 3.1. For all three figures, we used t; = ¢y 4+ 6a + 1,
to=ty+12a+ 1 and t3 =ty + 18a+ 1 and v = 5.

In the first case, Fig. 3.6a, we used Y,ew = 77 and so “slow subspace change” does not
hold. For the sparse vectors s;, each index is chosen to be in support with probability
0.0781. The nonzero entries are uniformly distributed between [20,60]. Since “slow
subspace change” does not hold, ReProCS does not work well. Since the support is
generated independently over time, this is a good case for both PCP and mod-PCP.
Mod-PCP has the smallest sparse recovery error. In the second case, Fig. 3.6b, we used
Ynew = 1 and thus “slow subspace change” holds. For sparse vectors, s;, the support is

generated in a_correlated fashion. We used support size s = 5 for each s;; the support
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remained constant for 25 columns and then moved down by s = 5 indices. Once it
reached n, it rolled back over to index one. Because of the correlated support change,
PCP does not work. In this case, both mod-PCP and ReProCS work but PCP does
not. In the third case, Fig. 3.6c, the parameters are the same as in the second case,
except that the support size is s = 10 in each column and it moves down by s/2 = 5
indices every 25 columns. In this case, the sparse vectors are much more correlated over
time, resulting in sparse matrix S that is even more low rank, thus neither mod-PCP
nor PCP work for this data. In this case, only ReProCS works. Thus from simulations,
modified-PCP is able to handle correlated support change better than PCP but worse
than ReProCS. Modified-PCP also works when slow subspace change does not hold; this
is a situation where ReProCS fails. Of course, modified-PCP, GRASTA and ReProCS
are provided the same partial subspace knowledge G while PCP and RSL do not get
this information.

In Fig. 4.4, as noted by an anonymous reviewer, one can see jumps in the ReProCS
error at the time instants at which there is a subspace change. This is due to how the
ReProCS algorithm works - it detects subspace change within a short delay of the change
and then slowly improves its estimate of the new subspace. For a detailed explanation,

please see [44].

3.4.5 Online robust PCA: comparisons for video layering

The lake sequence is similar to the one used in [64]. The background consists of a
video of moving lake waters. The foreground is a simulated moving rectangular object.
The sequence is of size 72 x 90 x 1500, and we used the first 1420 frames as training
data (after subtracting the empirical mean of the training images), i.e. M. The rest 80
frames (after subtracting the same mean image) served as the background L for the test
data. For the first frame of test data, we generated a rectangular foreground support

with upper left vertex (1, jy) and lower right vertex (i1, 25 + jo), where jo ~ Unif[1, 30]
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and i, ~ Unif[7,16], and the foreground moves to the right 1 column each time. Then
we stacked each image as a long vector €; of size 6480 x 1. For each index i belonging
to the support set of foreground s;, we assign (s;); = 185 — (£;);. We set M = L + S.
For mod-PCP, ReProCS and GRASTA, we used the approach used in [64] to estimate
the initial background subspace (partial knowledge): do SVD on Mg and keep the left
singular vectors corresponding to 95% energy as the matrix G. The averaged normalized
mean squared error (NMSE) of the sparse part over 50 Monte Carlo realizations is shown
in Fig. 3.7a. The averaged time spent for each algorithm is shown in Table 3.1. As can
be seen, in this case, both mod-PCP and ReProCS perform almost equally well, with
ReProCS being slightly better.

To show the advantage of mod-PCP, we did another experiment. In this case, the
support of the foreground was uniformly generated with m = [0.2nyns| nonzero pixels.
Everything else was the same as in the above experiment. Notice that in this case the
support size of the foreground is 20% while in the previous correlated motion case, it was
much smaller, only 3% on average. The corresponding foreground NMSE comparison is
shown in Fig. 3.7b. Figs. 3.7a and 3.7b again show that when there are many small
and fast-moving foreground objects, modified-PCP is the best algorithm, whereas when
there is one (or a few) slow-moving foreground object(s) ReProCS is slightly better than
modified-PCP.

On our webpage, we have also shown comparisons on a real video sequence consisting
of multiple and small-sized moving persons. This is the airport escalator sequence that
was originally downloaded from http://perception.i2r.a-star.edu.sg/bk_model/
bk_index.html, but is now unavailable at that website. We provide the video and
our experimental results comparing all the methods on our webpage at http://www.
ece.iastate.edu/~jzhan/data/. In this video, the background consists of a moving
escalator and the foreground is moving passengers. We used the first 100 frames of this

sequence as training data (after subtracting the empirical mean of the training images),
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i.e., M. The same training data was provided to ReProCS and GRASTA as well. This
is a sequence for which modified-PCP is better than or as good as all other algorithms.
It is significantly better than ReProCS.

Next we compute the value of p, for the lake video sequence. We calculated prior
knowledge G as explained above. We calculated the singular vectors U,V by doing
SVD decomposition on L and keeping all the directions with corresponding singular
values larger than 107! (we choose 1071° because it is the precision that MATLAB can
achieve for SVD decomposition); calculate Ujeyw, View by doing SVD decomposition of
(I — GG*)L and keeping all the directions with singular values larger than 107!°. With
this, we get p,(PCP) = 1.8584 x 10* and p,(mod-PCP) = 1.7785 x 10%.

We also calculate p, for fountain02 sequence (available on http://changedetection.net/).
The image size is 288 x 432, and we resize it to 96 x 144. For the first 600 background
images we form a low rank matrix [M¢ L] by stacking each image as a column (the first
300 columns belong to Mg and the rest belong to L). With the same steps for lake
sequence, we get p,(PCP) is 4.311 x 10* and p,(mod-PCP) is 1.7866 x 10%.
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Figure 3.7: Lake sequence NMSE comparison. (a) shows comparisons for one slow-moving
foreground object; (b) shows comparisons for a large number of small-sized fast-moving fore-
ground objects (total foreground support size is much larger for (b)).
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CHAPTER 4. RECURSIVE (ONLINE) SPARSE
RECOVERY IN LARGE AND STRUCTURED NOISE AND
BOUNDED NOISE

4.1 Introduction

4.1.1 Related work

Solutions for online RPCA have been analyzed in recent works [44], [65], [83, 84, 85].
The work of [44] introduced the Recursive Projected Compressive Sensing (ReProCS)
algorithmic framework and obtained a partial result for it. Another approach for online
RPCA (defined differently from above) and a partial result for it were provided in [65].
We use the term partial result to refer to a performance guarantee that depends on
intermediate algorithm estimates satisfying certain properties. We will see examples of
this in Sec. 4.2.7 when we discuss the above results. In very recent work [83, 84, 85],
a correctness result for ReProCS was obtained. The term correctness result refers to a
complete performance guarantee, i.e., a guarantee that only puts assumptions on the
input data (here m;) and/or on the algorithm initialization, but not on intermediate
algorithm estimates.

Other somewhat related work includes [66] (online PCA with contaminated data that
is not modeled as being sparse) and [86] (modified-PCP, a piecewise batch method). All
the above results are discussed Sec. 4.2.7. Some other works, such as [80](GRASTA),
[87] (adaptive-iSVD), [88] (incremental Robust Subspace Learning) or [77] (GOSUS),
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Figure 4.1: The first column shows the video of a moving rectangular object against moving
lake waters’ background. The object and its motion are simulated while the background is real.
In the next two columns, we show the recovered background (Zt) and the recovered foreground
support (7;) using Automatic ReProCS-cPCA (labeled ReProCS in the figure). The algorithm
parameters are set differently for the experiments (see Sec. 4.8) than in our theoretical result.
Notice that the foreground support is recovered mostly correctly with only a few extra pixels
and the background appears correct too (does not contain the moving block). The quantitative
comparison is shown later in Fig. 4.4. The next few columns show background and foreground-

support recovery using some of the existing methods discussed in Sec. 4.1.1.

[89, 90], [91], [92], [93] only provide an online RPCA algorithm without guarantees. We
do not discuss these here. As demonstrated by the experimental comparisons shown in
[64] and in [86, Fig 6], when the outlier support is large and changes in a correlated
fashion over time, ReProCS-based algorithms significantly outperform most of these,

besides also outperforming batch methods such as PCP and robust subspace learning

(RSL) [32, 79]. This is also evident from Fig. 4.1 and Fig. 4.4.

4.1.2 Contributions

In this work we develop and study an algorithm based on the ReProCS idea intro-
duced and studied in [44, 83, 84, 85]. We call it Automatic ReProCS with cluster PCA
(ReProCS-cPCA). This is an improved ReProCS algorithm compared to the ones stud-
ied in previous work. (1) It is able to automatically detect subspace changes within a
short delay; is able to correctly estimate the number of directions added or deleted; and
is also able to correctly estimate the clusters of eigenvalues along the existing directions.

This is important because it is impractical to assume that a subspace change time or the
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exact number of added or removed directions is known. Additionally, these estimates
themselves are relevant for applications such as understanding dynamic social networks’
structural changes in the presence of outliers. While many heuristics exist to detect
sudden subspace changes, we provide an approach for correctly detecting slow subspace
changes within a short delay. (2) Moreover it is able to accurately estimate both the
newly added subspace as well as the newly deleted subspace. The latter is done by
re-estimating the current subspace using an approach called cluster PCA (cPCA). The
basic ¢cPCA idea was introduced in [44]. The current work uses that idea to develop an
automatic algorithm. The cPCA step ensures that the estimated subspace dimension
does not keep increasing with time. (3) The current algorithm also returns more accu-
rate offline estimates. The algorithms studied in [44, 84] could not do (1) and (3). The
algorithms studied in [83, 84, 85] did not do (2) and (3).

The main contribution of this work is a correctness result (complete performance
guarantee) for the proposed algorithm under relatively mild assumptions on £;, x;, and
w;. To our knowledge, this and [83, 84, 85] are the first correctness results for online
RPCA. The result obtained here removes two key limitations of [83, 84, 85]. (1) First,
we obtain a result for the case where the £;’s can be correlated over time (follow an
autoregressive (AR) model) where as the result of [83, 84, 85] needed mutual indepen-
dence of the #£,’s. This models mostly static backgrounds in which changes are only
due to independent variations at each time, e.g., light flickers. However, a large class of
background image sequences change due to factors that are correlated over time, e.g.,
moving waters. This can be better modeled using an AR model. (2) Second, with one
extra assumption — that the eigenvalues of the covariance matrix of £; are clustered for a
period of time after the previous subspace change has stabilized — we are able to remove
another significant limitation of [83, 84, 85]. That result needed the rank of L to grow as
O(logn) while our result allows it to grow as O(n). Batch methods such as PCP allow

the rank to grow almost linearly with n. The clustered eigenvalues assumption is valid
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for data that has variability at different scales - large scale variations would result in the
first (largest eigenvalues’) cluster and the smaller scale variations would form the later
clusters.

Because we use extra assumptions — accurate initial subspace knowledge, slow sub-
space change, and clustered eigenvalues — we are able to remove an important limitation
of batch methods [32, 33, 94]. As we explain in Sec. 4.2.7, our result requires an order-
wise looser bound on the number of time instants for which a particular index ¢ can be
outlier-corrupted compared to these results. In other words, it allows significantly more
correlated changes of the outlier support over time. This is important in practice, e.g.,
in video, foreground objects do not randomly jump around; in social networks, once an
anomalous pattern starts to occur, it remains on many of the same edges for a while. The
clustered eigenvalues assumption is discussed above. Accurate initial subspace knowledge
and slow subspace change were discussed earlier (just above Sec. 1.1.2).

The novelty in the proof techniques used in this work is summarized in Sec. 4.4.1.
The proof relies on the sin § theorem [95] (that bounds the effect of a perturbation on a

Hermitian matrix’s top eigenvectors) and the matrix Azuma inequality [96].

4.1.3 Notation

We use the interval notation [a, b] to mean all of the integers between a and b, inclu-
sive, and similarly for [a,b) etc. For a set T, |T| denotes its cardinality and 7 denotes
its complement set. We use () to denote the empty set.

We use ' to denote a vector or matrix transpose. The [,-norm of a vector and the
induced [,-norm of a matrix are denoted by || - ||,. For a vector  and set T, 7 is a
smaller vector containing the entries of & indexed by entries in 7. We use Z to denote
the identity matrix. Define I to be an n x |T| matrix of those columns of the identity
matrix indexed by entries in 7. For a matrix A, define A7 := AI;. For matrices

P, Q where the columns of @ are a subset of the columns of P, P\ Q refers to the
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matrix of columns in P and not in Q. For a matrix H, H "YP U AU’ denotes its reduced
eigenvalue decomposition. For Hermitian matrices A and B, the notation A < B means
that B — A is positive semi-definite.

For a matrix A, the restricted isometry constant (RIC) 0,(A) is the smallest real

number Jd, such that
(1=d)[=l3 < [Az]3 < (1 +4,)=]3

for all s-sparse vectors @ [12]. A vector x is s-sparse if it has s or fewer non-zero entries.
We refer to a matrix with orthonormal columns as a basis matriz. Thus, for a basis
matrix P, P'P = I. For basis matrices P and P, dif(P, P) := ||(I— PP")P||, quantifies

error between their range spaces.

4.1.4 Paper organization

This paper is organized as follows. We discuss the data models and the main results
for the proposed algorithm in Sec. 4.2. The Automatic ReProCS-cPCA algorithm is
developed in Sec. 4.3. The stepwise algorithm is summarized in Algorithm 4. The
proof outline of our main result is given in Sec. 4.4. This section also helps understand
the algorithm better and explains the novelty in the proof techniques. The lemmas for
proving the main result, the proof of the main result and the proofs of the main lemmas
are given in Sec. 4.5. The key lemmas needed to prove the main lemmas are proved
in Sec. 4.6 (lemmas for analyzing the projection-PCA based subspace addition step)
and in Sec. 4.7 (lemmas for analyzing the cluster PCA based subspace deletion step).
These are the long sections that contain the new proofs that rely on the matrix Azuma
inequality [96]. This is needed because the £;’s are now correlated over time. Simulation
experiments comparing the proposed algorithm to some existing batch and online RPCA

algorithms are described in Sec. 4.8. Conclusions are given in Sec. 4.9.
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4.2 Data Models And Main Results

In this section, we give the data models and correctness results for our proposed
algorithm, Automatic ReProCS-cPCA, and for its simplification, Automatic ReProCS.
The algorithm itself is developed in Sec 4.3 and the complete stepwise algorithm is
summarized in Algorithm 4. We give below the model on the outlier support sets 7;,
the model on £;, and the denseness assumption. Using these, we state the result for
Automatic ReProCS in Sec. 4.2.5. In Sec. 4.2.6, we state the clustering assumption and
give the correctness result for Automatic ReProCS-cPCA. The results are discussed in

Sec. 4.2.7.

4.2.1 Model on the outlier support set, 7;

We give here one simple and practically relevant special case of the most general
assumptions (Model 10) on the outlier support sets 7;. It requires that the 7;’s have some
changes over time and have size less than s. An example of this is a video application
consisting of a foreground with a 1D object of length s or less that remains static for at
most ( frames at a time. When it moves, it moves downwards (or upwards, but always
in one direction) by at least /ﬁ) pixels, and at most p% pixels. Once it reaches the bottom
of the scene, it disappears. The maximum motion is such that, if the object were to
move at each frame, it still does not go from the top to the bottom of the scene in a
time interval of length «. This is ensured if p—“;oz < n. Anytime after it has disappeared
another object could appear. A visual depiction of this model is shown in Fig. 4.2. We
have used this “one object moving in one direction” example to only explain the idea
in a simple fashion. Instead, one could also have multiple moving objects and arbitrary
motions, as long as the union of their supports follows the assumptions of Model 4 below

or those given later in Model 10. These models were introduced in [85].

Model 4 (model on T;). Let t*, with t* < t*T1 denote the times at which T; changes
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Figure 4.2: Examples of Model 4. (a) shows a 1D object of length s that moves by at least
s/3 pixels at least once every 5 frames (i.e., p =3 and f = 5). (b) shows the object moving by
s pixels at every frame (i.e., p =1 and = 1). (b) is an example of the best case for our result
- the case with the smallest p, 5 (7;’s mutually disjoint)

and let T™ denote the distinct sets. For an integer o,
1. assume that T, = T™ for all times t € [t* t5+1) with (t*T1 — %) < B and |TH| < s;

2. let p be a positive integer so that for any k, TH N T = (; assume that p*B <

0.0001cv;

3. for any k, Zf:gﬂ |7'[z‘] \T[i+1]| <n and for any k < i <k+a, (T[k} \T[k+1]) N
(TEN TH) = 0 (one way to ensure the first condition is to require that for all 4,

% i+1 s ;
|71 T+ < > with >a <n).

In this model, k takes values 1,2, ...; the largest value it can take is ty... We set a in

the Theorem.

4.2.2 Model on ¢,

A common model for data that lies in a low-dimensional subspace is to assume that,
at all times, it is independent and identically distributed (iid) Gaussian with zero mean
and a fixed low-rank covariance matrix 3. However this can be restrictive since, in many

applicationssedatagstatistics change with time, albeit slowly. To model this perfectly,
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one would need to assume that £; is zero mean with covariance matrix X, at time t.
If 3 YD P, AP}, this means that both P; and A; can change at each time ¢, though
slowly. This is the most general model but it has an identifiability problem if the goal is
to estimate the subspace from which £, was generated, range(P;). The subspace cannot
be estimated with one data point. If it is r-dimensional, it needs at least r data points.
So, if P, changes at each time, it is not clear how one can estimate all the subspaces. To
resolve this issue, a general enough but tractable option is to assume that P; is piecewise
constant with time and A; can change at each time. To ensure that 3; changes “slowly”,
we assume that, when P; changes, the eigenvalues along the newly added directions are
small initially for the first d frames, and after that they can increase gradually or suddenly
to any large value. One precise model for this is specified next.

The model below assumes boundedness of ;. This is more practically valid than the
usual Gaussian assumption since most sensor data or noise is bounded. We also replace
independence of £;’s by an AR model with independent perturbations v; and we place
the above assumptions on v;. As explained earlier, this is a more practical model and

includes independence as a special case.
Model 5 (Model on £;). Assume the following.
1. Let £y =0 and fort =1,2,... tyax, assume that
by =bb;_1 + vy

for ab < 1. Assume that the vy are zero mean, mutually independent and bounded
random vectors with covariance matriz

COV(Vt) = Et ElD PtAtPt/'

2. Let ty,1s,...t; denote the subspace change times. The basis matrices Py change as

p [(Pt—lRt \ Pt,old) Pt,new] th - tla t27 Sty
t pu—

P, otherwise.
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where Ry 1s a rotation matriv, Py, new and Py, o4 are basis matrices of 8126 N X T} pew
and n X 1;q respectively, Py, 4 contains a subset of columns of Py, 1Ry, and

Py, new'Pr;—1 = 0 (new directions are orthogonal to previous subspace).

ttrain ttrain
1 1
A7 = A E A and T =\, — E Ay ).
(ttrain =1 t) o (ttrain =1 t)

The eigenvalues’ matrices Ay are such that (i) Amax(A) < AT and (i) for a d <

3. Define

tit1 — 5,

0< A <A< AP <3\ where

new

- . ’
)\new = 1min - min /\min (Ptj,new 2t-Ptj,new) )
J o teltyitj+d]
+ /
Aoy '=MaX  MaX  Apax (Ptj,new EtPtj,new) ) (4.1)

J o telty tj+d]

4. Assume that d > (K +2)a. This also implies that tj 1 —t; > d > (K+2)a. We set

K and « in the Theorem. This along with (4.1) quantifies “slow subspace change”.

5. Other assumptions: (i) define ty := 1 and assume that tiam € [to,t1); (i) for j =
0,1,2,...,J, define rj := rank(Py;), 7jnew := Tank(Py; new); Tjod := 1ank(Py; oa)
Clearly, rj = 1j—1 + Tjnew — Tjoid- Assume that 1 ne, s small enough compared to
Tjold 50 that ; < 1 and 7jpew < Thew for all j for constants r and rpe,. Assume

that 7+ 7pey < min(n, tj —t;) and rpey < 7.

6. Since the vy’s are bounded random variables, there exists a v < 00 and a Ypew < 7Y
such that

max ||Pt/Vt||2 S 77 ma'X max ||Ptj,newlut||oo S ’Ynew-
t J o teltytj+d]

We assume an upper bound on Ve, in the Thoerem.

A visual depiction of Model 5 is shown in Figure 4.3. The above model is similar

[44, 85]. Various low-rank and “slow changing” models on ¥,
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‘ P, = P, ‘ P, = Py = [(Po)R1) \ Pu)oa Pynew) ‘ e ‘Pt = Pj) = [(Py-1Rj) \ Pl P(j)-ncw]‘
[ [ [ [ [
1 ty to tj tj+1

Figure 4.3: A diagram of Model 5

are special cases of the above model. One interesting special case is one that allows the
variance along new directions to increase slowly as follows: for t € [t;,¢;+d], let Ajpew =
Py, o' 2t Py, new and assume that (Aypew)ii = (vi) 7 7gA~ for i =1,...,7jnew. Here

¢; > 1 and v; > 1. An upper bound on v; of the form ¢;(v;)? < 3 ensures that (4.1) holds.

Remark 4.2.1. Model 5 requires the upper bound on the eigenvalues along the new
directions to hold only for the first d time instants after t;. At any time t > t; +d, the
eigenvalues along Py, ney could increase to any large value up to A\* either gradually or

suddenly.

The above model requires the directions to get deleted and added at the same set
of times t = t;. This is assumed for simplicity. In general, directions from range(P;; 1)
could get deleted at any other time as well. The lower bound in (4.1) requires the energy
of £, along the new directions at all times t € [t;,t; + d] to be above A\~. With very
minor changes to the proof (of Lemma 4.5.34), we can relax this to the following: we
can let A, be the minimum eigenvalue along the new directions of any a-frame average
covariance matrix over the period [t;,t; + d] and require this to be larger than A\~. For
video analytics, this translates to requiring that, after a subspace change, enough (but not
necessarily all) background frames have “detectable” energy along the new directions, so
that the minimum eigenvalue of the average covariance along the new directions is above
a threshold. For the recommendation systems’ application, this means that the initial set
of users may only be influenced by a few, say five, factors, but as more users come in to
the system, some (not necessarily all) of them may also get influenced by a sixth factor
(newly added direction). There is a trade off between the upper bound on A, in (4.1)

new

in-Model 5. above.and.the bound on p?3 assumed in Model 4. Allowing a larger value of
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AF ., will require a tighter bound on p?3. We chose one set of bounds, but many other
pairs would also work. For video analytics, this means that if the background subspace
changes are faster, then we also need the foreground objects to be moving more so we

can ‘see’ enough of the background behind them.

4.2.3 Denseness

To separate sparse x;’s from the £,’s, the basis vectors for the subspace from which
the £,’s are generated cannot be sparse. We quantify this using an incoherence condition

similar to [32].

Model 6 (Denseness). Let p be the smallest real number such that max; || P,,'L||5 < %2
and max; || Py, new L[5 < 222 for all j (I; is the i™ column of the identity matriz; thus

P’I; is the i-th row of P). Assume that
2srp < 0.09n and 257 et < 0.0004n.

Fact 4.2.2. Model 6 is one way to ensure that || Py,'Ir||l2 < 0.3 and || Py, pew'Ir|2 < 0.02
for all sets T with |T| < 2s. This follows using the fact that for an r x s matriz M,

| M||2 < v/smax; || M| where M; is the i-th column vector of M.

4.2.4 Assumption on the unstructured noise w;

Model 7. Assume that the noise w; is zero mean, mutually independent over time, and
bounded with ||w||2 < €.

4.2.5 Main result for Automatic ReProCS

In this section, we give a correctness result for Automatic ReproCS; i.e., for Algorithm
4 with the cluster PCA (cPCA) step removed. This is exactly the algorithm studied in
our earlier work [85]. The result given in [85] for it required mutual independence of

the Ly'ssoveitimesForthe video application, this means that background changes at
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different times are due to independent causes, e.g., independent light flickers. This
is often a restrictive assumption. The current result replaces this requirement with
an autoregressive model which is a much better model for background changes due to
correlated factors such as moving lake or sea waters.

The main idea of Automatic ReProCS is as follows. It estimates the initial subspace
as the top 7o left singular vectors of [my, mo,...,my, , |. At time ¢, if the previous
subspace estimate, f’t_l, is accurate enough, because of the “slow subspace change”
assumption, projecting m; = x; + £; + w; onto its orthogonal complement nullifies
most of ¢;. Specifically, we compute y, := ®,m; where ®, :=1 — Pt,lpt,l’ . Clearly,
y, = ®;x; + b, with ||b||o being small. Thus recovering x; from vy, is a traditional
sparse recovery problem in small noise [12]. We recover x; by [y minimization with the
constraint ||y, — ®;x|l2 < £ and estimate its support by thresholding using a threshold w.
We use the estimated support, 7;, to get an improved debiased estimate of x;, denoted
Xy, by least squares (LS) estimation on T, [52]. We then estimate £; as = m, — X,
The estimates £, are used in the subspace estimation step which involves (i) detecting
subspace change; and (ii) K steps of projection-PCA, each done with a new set of «
frames of Zt, to get an accurate enough estimate of the new subspace. This step is
explained in detail later in Sec. 4.3. Automatic ReProCS has four algorithm parameters

-a, K, & w - whose values will be set in the result below.

Theorem 4.2.3. Consider Algorithm J without the cluster PCA step. Assume that, for
t > tiain, My = € + Wy +x; and, for t < tiyam, my = £, + wy. Pick a ( that satisfies

1074 0.003A~ 1 0.05\~
(TO + Jrnew>2’ (TO + J’r’new>2)\+7 (TO + Jrnew)3’727 (TO + Jrnew)372

Cgmin{

Let by = 0.1. Suppose that the following hold.

32(2(TO+JT7LEU/)'YZ)2
1—b0)2(0.0017pewCA™)2

1. enough initial training data is available: tipam > ( (11logn—+log8)

2. algorithm parameters are set as:

2 TnewYnew lo 85T new
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O = Qgag where aggq > 3225 et QS (11 log n + log (52K +
44)J))

3. model on T;: Model 4 holds;

4. model on £;:
Model 5 holds with Py, new' [Po, Pty new Promews - - - Pty mew] = 0, b < by = 0.1, and
With \/TrewYnew SMall enough so that 14§ < min, mine7; |(24)i];
Model 6 (denseness) holds with r replaced by (1o + JTnew)-

5. model on w;: Model 7 holds with €2, < 0.03¢\~

- Assume that T, wy, wo, ..., Wy, V1,Va, ...,V

~~~~~ m

are mutually independent random variables.
Then, with probability > 1 — 2n=1°, at all times t,
1. T; is exactly recovered, i.e. T =T, for all t;
2. [1xe — %ell2 < 1.34 (29/C + \/TrewVnew + €) and [[€ — Lil|a < [[X¢ — %el|o + €u;
3. the subspace error SE, := ||(I— P,P,/\P,||ls < 1072\/C for all t € [t; + d, t;41).

4. the subspace change time estimates satisfy t; < fj <t; + 2a; and its estimates of

the number of new directions are correct: 7jnewp = Tjmew for j =1,...,J.

Proof: The above result follows as a corollary of the more general result, Theorem

4.2.8, that is given below. For its proof, please see Appendix C.6.

Remark 4.2.4. Consider condition 6). If it is not practical to assume that w;’s are
independent of T (e.g., if w; contains the smaller magnitude outlier entries and x; the
larger ones and so T; = support(X;) cannot be independent of w;), the following weaker
assumption can be used with small changes to the proof (see Fact 4.6.1 in Sec. 4.6.2). Let

Assume that Q,v1,Vvs, ...,V . are mutually independent.
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Theorem 4.2.3 says the following. If an accurate estimate of the initial subspace is
available (ty., is large enough); the algorithm parameters are set appropriately; the
outlier support at time ¢, 7;, has enough changes over time; £; follows an AR model
with parameter b < by = 0.1 (i.e., the £;’s are not too correlated over time); the low-
dimensional subspace from which v, is generated (this is also approximately the subspace
from which £; is generated) is fixed or changes “slowly” enough, i.e. (i) the delay between
change times is large enough (t;41 —t; > d > (K + 2)«) and (ii) the eigenvalues along
the newly added directions are small enough for d frames after a subspace change; the
basis vectors whose span defines the low-dimensional subspaces are dense enough; the
noise w; is small enough; then, with high probability (whp), the error in estimating £;
or x; will be bounded by a small value at all times ¢t. Also, whp, the outlier support
will be exactly recovered at all times; and the error in estimating the low-dimensional
subspace will decay to a small constant times /C within a finite delay of a subspace
change. Moreover, subspace changes will get detected within a short delay, and the
dimension of the newly added subspaces will get correctly estimated.

The condition “14¢ < min, minge7; |(2;);|” in condition 4) can be interpreted either as
another slow subspace change condition or as a requirement that the minimum magnitude
nonzero entry of x; (the smallest magnitude outlier) be large enough compared to €, +
V/Trew new- Interpreted this way, it says the following. If £, is the true data, m; — £, =
w; + X, is the vector of corruptions with w; being the small corruptions and the nonzero
entries of x; being the large ones (outliers). We need w; to be small enough to not
affect subspace recovery error too much (||w¢|l2 < €, < 4/0.03¢A~) and we need the

nonzero entries of x; to be large enough to be detectable (min; min,ep; [(z¢);| > 14€ ~

14(€w + v/TnewYnew) )-
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4.2.6 Eigenvalues’ clustering assumption and main result for Automatic

ReProCS-cPCA

The ReProCS algorithm studied above (which is the same as the one introduced in
[85]) does not include a step to delete old directions from the subspace estimate. As a
result, its estimated subspace dimension can only increase over time. This necessitates
a bound on the number of subspace changes, J. The bound is imposed by the denseness
assumption - notice that Theorem 4.2.3 requires the bound in Model 6 to hold with r
replaced by 7o+ Jrpew. In this section, we relax this requirement by analyzing automatic
ReProCS-cPCA (Algorithm 4) which includes cluster PCA to delete the old directions
from the subspace estimate. This is done by re-estimating the current subspace.

In order to be able to design an accurate algorithm to delete the old directions
by re-estimating the current subspace, we need one of the following for a period of dy
frames within the interval [t;,¢;11). We either need the condition number of A; (or
equivalently of 3;) to be small, or we need a generalization of it: we need its eigenvalues
to be “clustered” into a few (at most 1)) clusters in such a way that the condition number
within each cluster is small and the distance between consecutive clusters is large (clusters
are well separated). The problem with requiring a small upper bound on the condition
number of 3J; is that it disallows situations where the £;’s constitute large but structured
noise. This is why the “clustered” generalization is needed. This would be valid for
data that has variations at different scales. For example, for data that has variations at
two scales, there would be two clusters, the large scale variations would form the first
cluster and the small scale ones the second cluster. These clusters would naturally be
well separated.

Let ¥ denote the maximum number of clusters. As we will explain in Sec. 4.3, the
subspace deletion via re-estimation step is done after the new directions are accurately
estimated. As explained later, with high probability (whp), this will not happen until

t;+Ka. Thus, we assume that the clustering assumption holds for the period [t; + Ka+
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1,t; + Ka+ dy] with dy > (0 + 3)a and ¢4 —t; > Ko + ds. In the algorithm, cluster

PCA is done starting at #; + Ka.
Model 8. Assume the following.

1. Assume that tj11 —t; > Ka + dy for an integer dy > (U + 3)a (where 1 is defined
below). Assume that for allt € [t; + Ka+1,t; + Ka+dy], Ay is constant; let A

be this constant matriz and assume that Apin(Ag)) > A7,

2. Define a partition of the index set {1,2,...r;} into sets G;j1,Gjoa,...,Gjv, as fol-
lows. Sort the eigenvalues of A(;) in decreasing order of magnitude. To define G,
start with the first (largest) eigenvalue and keep adding smaller eigenvalues to the
set. Stop when the ratio of the mazimum to the minimum eigenvalue first exceeds
gt = 3 or when there are no more nonzero eigenvalues. Suppose this happens for
the i-th eigenvalue. Then, define G;1 = {1,2,...i—1}. For G, start with the i-th
ergenvalue and repeat the same procedure. Keep doing this until there are no more

nonzero eigenvalues. Let 9; denote the number of clusters for the j-th subspace and

let ¥ := max; 9;. Define

)‘Ik ‘= max \; (A(j)), )\j_’k = min \; (A(j))

1€G; k 1€G; k
Assume that the clusters are well-separated, i.e.,
AT
DML <t =02 (4.2)
jik

Fact 4.2.5. The above way of defining the clusters is one way to ensure that the condi-
tion number of the eigenvalues within each cluster (ratio of the maximum to minimum
eigenvalue of the cluster) is below gt =3, i.e., for allk =1,2,...,9;,

+
ik < gt =3, (4.3)
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A model similar to Model 8 was first introduced in [44] where the cluster PCA idea

was introduced.

Remark 4.2.6. The case when, for the entire period [t; + Ko+ 1,t; + Ka + dy], the
condition number of X, is below g* is a special case of Model 8 with ¥; = 9 =1 and

Xt =0.

Remark 4.2.7. Model 5 requires the eigenvalues along Py, e to be small fort € [t;,t;+
d| with d > (K + 2)a while Model 8 requires all eigenvalues to be constant for t €
t;+Ka+1,t;+Ka+dy|. Taken together, this means that for allt € [t;,t;+ Ka-+ds], we
are requiring that the eigenvalues along Py, ne. be small. However aftert =t;+ Ka+ds,
there is no constraint on its eigenvalues until t = t; 11 + Ko at which time Model 8 again
requires all eigenvalues to be constant. Thus, in the interval [t;+ Ka+dy+1,t;41+ Kal,
or in later intervals of the form [tiy; + Ka +dy + 1,111 + Ka] for any j° > 0, the
eigenvalues along Py, ne, could increase to any large value up to A\* either gradually or

suddenly. Or they could also decrease to any small value.

With small changes to the proof, one can relax the A; constant requirement to
the following. Let ClustInterval denote the interval [t; + Ka + 1,t; + Ka + ds] and
let ty denote the first time instant of ClustInterval. Define a partition of the index
set {1,2,...7;} into sets G;1,Gj2,...,Gj9, as in Model 8 but by using Ay, to replace
A). Assume that for all £ = 1,2,...,7;, )\;k < mineg, , MiNyeClustinterval Ai(Ay) <
MaXcg, , MaAXeClustinterval Ai(Ay) < )\jk

At the cost of making our model more complicated, the requirement discussed in
Remark 4.2.7 can also be relaxed, i.e., we can allow the eigenvalues along Py, yew to
increase to a large value before imposing Model 8. To do this we need to assume an
upper bound on d. Suppose that (K + 2)a < d < (K + 3)a. Suppose also that we allow
a period of A = 4a frames for the new eigenvalues to increase. We can assume Model 8

holds for the period [t; + Ko+ 30+ A+ 1,t; + Ka+ 3a+ A + ds] with dy > (V4 3)a.
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In addition, we would also need ¢, —t; > (K 4 3)a+ A +dy. With this, we would run
the cluster PCA algorithm starting at ; + Ko + 3a + A instead of at #; + Ka as we do
nOW.

We give below a correctness result for Automatic ReproCS-cPCA (Algorithm 4) that
uses the above model. It has one extra parameter, ¢+, other than the four used by
Automatic ReProCS. gt is used to estimate the eigenvalue clusters automatically from

an empirical covariance matrix computed using an appropriate set of £;’s.

Theorem 4.2.8. Consider Algorithm 4. Assume that, for t > tiyam, my = €, + W, + X

and, fort < tiainm, my = £, + wy. Pick a C that satisfies

10~ 0.003A~ 1 0.05A~ }

< mi
¢ < min { (r + Tnew)? (7 4 Toew) 2 AT (1 4 Tnew)®Y2 " (7 + Thew) 372

Let by = 0.1. Suppose that the following hold.

(11logn+log8)

1. enough initial training data is available: tipam > (1_b0)23(%%gﬁiwcl\_)2

2. algorithm parameters are set as:

1—bo log(02) |’ 1-0.06
1~24 2 + new' neu}+2 w 4 1_b2 2
a = max{ g, Ager} where aggq > 32 (2v¢ éibo)z ) (O_O(flrmi)c/\_)z(lllogn +

log (52K +44).J)) and e > 3255030 O (11 1og n + log((520 + 36).J));

€ = Eoop 1= € + DEE Tmewinen 7 f [MW Gt = 006 _ 3 96

3. model on T;: Model 4 holds;

4. model on £;:
Model 5 holds with b < by = 0.1 and with \/TpewYnew sSmall enough so that 14§ <
i, minger; | (2ol
Model 8 holds with |G| > 0.15(7 + rpew);
Model 6 (denseness) holds.

5. model on w;: Model 7 holds with €2, < 0.03¢\~
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6. independence: Let T = {T;i}i—i 2 . Assume that T, wq,ws, ..., wy, ., V1, Vs,

y---sbmax

oy V., are mutually independent random variables.

Then, with probability > 1 — 3n~1°, at all times t,

1. T; is exactly recovered, i.e. T, =T, for all t;
2. |1xe — %ell2 < 1.34 (29/C + \/TrewYnew + €0) and |8 — £il|a < [[x¢ — Xel|o + €u;

3. the subspace error SE; := |1 — P,P/)Py|ly < 1072\/C for all t € [t; + d,t;11);
4. the subspace change time estimates given by Algorithm 4 satisfy t; < t} <t;+2a;

5. its estimates of the number of new directions are correct: 7 pewk = Tjnew fOT ] =

... J;

6. etgenvalue clusters are recovered exactly: g},k =G for all j and k; thus its esti-

mate of the number of deleted directions is also correct.

Proof: The proof outline is given in Section 4.4. The proof is given in Sections 4.5,

4.6, 4.7.

Remark 4.2.9. Notice that the lower bound |G; | > 0.15(7 + 7pew) can hold only if the
number of clusters 9; is at most 6. This is one choice that works along with the given
bounds on other quantities such as p*S. It can be made larger if we assume a tighter
bound on p?B for example. But what will remain true is that our result requires the

number of clusters to be O(1).

Remark 4.2.10. The independence assumption can again be replaced by the weaker one

of Remark 4.2.4.

The extra assumption needed by the above result compared to Theorem 4.2.3 is the
clustering one. Using this, ReProCS-cPCA is able to correctly estimate the current sub-

al, Py is an accurate estimate of range(Ptj_l) where as when
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using ReProCS (and Theorem 4.2.3), it is an estimate of range([Po, P+, news Ptynews - - -

Y

P;, | new)). Because of this, (i) the above result needs a much weaker denseness assump-

tion, (ii) it does not need a bound on J, and (iii) it requires the new directions to only

be orthogonal to range(P;,_1).We discuss the results in detail in Sec. 4.2.7.

Corollary 4.2.11. The following conclusions also hold under the assumptions of Theo-

rem 4.2.8 with probability at least 1 — 3n=19.

1. The recovery error satisfies |[€; — £z < ||x; — X¢||2 + €w and

1.34 (2\/Z + /T rewYnew + ew) t € ty, (u; +1)af

1.34(2.15v/C 4+ 0.19 - (0.1t € [(a4;+ k — Da + 1, (4, + k)a],

1% = Xell2 < 4 oo new + €w) k=2.3,....K
2.67(\/C + €w) tetj+Ka+1,t;+ Ka+ (9+1)a]
2.67(;—/C + €w) te[tj+Ka+ 0+ Da+ 1t —1];
\ Lew

2. The subspace error satisfies,

(

1 t e [tj,fj—l—oz}

1072/ +0.19-0.1%1 te[t;+(k—Da+ 1Lt +ka], k=2,3,...,K
SE; <

10-2/C teltj+Ka+ 1,1+ Ka+ 9+ 1))

10_27‘4»17:7”371,\/Z S [tAJ + Ko+ (19 + 1)0[ + 17tj+1 - 1] )

\

Online matrix completion (MC). MC can be interpreted as a special case of

RPCA and hence the same is true for online MC and online RPCA [32, 85]. In [85], we

explicitly stated results for both. In a similar fashion, an analog of either of the above

results can also be obtained for online MC.

Offline RPCA. In certain applications such as video analytics, an improved offline

estimate of both the background and the foreground is desirable. In some other applica-

tionssthere is.norealneed for an online solution. We show here that, with a delay of at
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most (K + 2)a frames, by using essentially the same ReProCS algorithm with one extra

step, it is possible to recover x; and £; with close to zero error.

Corollary 4.2.12 (Offline RPCA). Consider the estimates given in the last two lines of
Algorithm 4. Under the assumptions of Theorem 4.2.8, with probability at least 1 —3n =19,

~offline

at all times t, ||x; — x0Me||, < 2.67(VC +€w), [[€, — Lll2 < 2.67(\/C + 2¢4,), and all

its other conclusions hold.

Observe that the offline recovery error can be made smaller and smaller by reducing
¢ (this, in turn, will result in an increased delay between subspace change times). As
can be seen from the last two lines of Algorithm 4, the offline estimates are obtained at
t= fj + Ka. Since fj <'t; + 2c, this means that the offline estimates are obtained after

a delay of at most (K + 2)a frames.

4.2.7 Discussion

Online versus offline. We analyze an online algorithm that is faster and needs
less storage. It needs to store only a few n X a or n x r matrices, while PCP needs to
store matrices of size n X tyna.c. Other results for online algorithms include correctness
results from [83, 84, 85] (discussed below), and partial results of Qiu et al. [44] and Feng
et al. [65]. In [65], Feng et al. proposed a method for online RPCA and proved a partial
result for their algorithm. Their approach was to reformulate the PCP program and to
use this reformulation to develop a recursive algorithm that converged asymptotically
to the solution of PCP as long as the basis estimate P, was full rank at each time ¢.
Since this result assumed something about an intermediate algorithm estimate, P, it
was a partial result. In [44], Qiu et al. obtained a performance guarantee for ReProCS
and ReProCS-cPCA that also needed intermediate algorithm estimates to satisfy certain
properties. In particular, their result required that the basis vectors for the currently

unestimated subspace, range((/ —-P, P,/ )P4, new), be dense vectors. Thus, their result
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was also a partial result. In the current work, we remove this requirement and provide a
correctness result for both ReProCS and ReProCS-cPCA. The assumption that helps us
get this is Model 4 on 7T; (or its generalization given in Model 10 later). Secondly, unlike
[44], we provide a correctness result for an automatic algorithm that does not assume
knowledge of subspace change times, number of directions added or removed, or of the
eigenvalue-based subspace clusters. Thirdly, we allow the £;’s to follow an AR model
where as [44] required independence over time.

To our knowledge, our work and [83, 84, 85] are the only correctness results for an
online RPCA method. Our work significantly improves upon the results of [83, 84, 85].
We allow the £;’s to be correlated over time and use a first order AR model to model
the correlation. As discussed earlier, this is significantly more practically valid than
the independence assumption used in [83, 84, 85]. It includes independence as a special
case. Moreover, with the extra clustering assumption, we are able to analyze Automatic
ReProCS-cPCA in Theorem 4.2.8. It needs a much weaker rank-sparsity assumption
than what is needed by the result of [85], and it does not need a bound on J. We discuss
this below.

Bounds on rank and sparsity. Let L := [(1,05... 0, .. ]|, S = [z1,29...24,,.],
Tmat := rank(L) and let sy, be the number of nonzero entries in S. With our models,
Smat < Stmax and Tmay < 19 + Jrnew With both bounds being tight. Models 4 and 6
constrain s and s,7, Ty respectively. Model 4 needs s < pon/a and Model 6 needs
rs € O(n) and rpews € O(n). Using the expression for «, it is easy to see that if
) =O(

J € O(n), ryew € O(1) and r € O(logn), then * € (’)( ) Alternatively,

2 10g n (log

if r € O(1), then £ € (9(10;1). Thus, Theorem 4.2.8 definitely holds in two regimes

of interest. The first is J € O(n), Tew € O(1), r € O(logn), Smar € O(F2x) and

(logn)?

Tmat € O(n). The second is J € O(n), Tew € O(1), 7 € O(1), Spar € O(%max) and

logn

Tmat € O(n). The second regime is more favorable when comparing bounds on $y,,; and

Tmat, Dut, it also implies that the dimension of the subspace at any given time is O(1).
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This can be restrictive. The first regime allows the subspace dimension at any time to
be O(logn) which is more reasonable, but, because of this, it needs a tighter bound on
s and hence on Sp,¢.

In either regime, our requirements are weaker than those of the PCP results from
(33, 94]: they need ry.s = O(n) which implies ryatSmat € O(Ntmax); thus if spa €
O(%), they would require 7y, to be O(logn). In the first regime, our conditions are
slightly stronger than those of the PCP result from [32] while in the second, they are
comparable: [32] needs rmat € O((5zz) and smar € O(nfmax).

Either set of requirements for Theorem 4.2.8 is significantly weaker than what is
needed by Theorem 4.2.3 or by the results of [83, 84, 85]: both need 7.t € O(logn). This
is because both analyze ReProCS without the cluster PCA based subspace deletion step.
Suppose that 7jnew = Tnew for each j. For ReProCS without cluster PCA, this means
that the dimension of the estimated subspace grows by 7. with each subspace change
time. Thus, the maximum dimension of the estimated subspace is 7. = 79 + J7rnew and
this is what was used in place of r in the denseness assumption as well in the bound
on (. This is why these results need ry., to be O(logn). However, in Theorem 4.2.8,
we analyze ReProCS with cluster PCA. Cluster PCA is used to re-estimate the current
subspace and thus effectively delete the subspace corresponding to the old directions.
This ensures that the rank of the estimated subspace is also bounded by the rank of the
true subspace at any time, i.e. by r. Thus, Theorem 4.2.8 only needs r € O(logn) while
Tmat can as large as O(n).

No bound on the number of subspace changes, J. Notice that the result
for ReProCS-cPCA given in Theorem 4.2.8 does not require an upper bound on the
number of subspace changes, J. On the other hand, the results for ReProCS (both
Theorem 4.2.3 and the results from [83, 84, 85]) require a bound on J that is imposed
by the denseness assumption: they need (9 + Jrpew)2sp < 0.09n. All results for PCP

need a bound on ry,. Under our model of subspace change, 7, is at most ro + Jryew
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with the bound being tight and hence the PCP results also need a bound on J. Of
course, even for Theorem 4.2.8, J does affect bounds on other quantities: the result
needs t;41 —t; > d > Ka + (0 4+ 3)a where « is an algorithm parameter that depends
linearly on logJ. Thus, for any given value of J, the delay between subspace change
times, t;11 —t;, and the duration for which the eigenvalues along the new directions need
to be small (quantified in (4.1)), d, need to grow as log J.

Assumptions on how often the outlier support 7; needs to change. An
important advantage of our work over PCP and other batch methods is that we allow
more correlated changes of the set of outliers over time. From the assumption on 7y, it
is easy to see that we allow the number of outliers per row of L to be O(t,ax), as long
as the sets follow Model 4'. This is the same as what our previous results [83, 84, 85]
also allowed. On the other hand, the PCP results from [33, 94] need this number to be
O(%) which is stronger. The PCP result from [32] needs that the set Um3*7; should
be generated uniformly at random which is even stronger.

Other assumptions. The above advantages are obtained because we use extra
assumptions on £;. We assume (i) accurate knowledge of the initial subspace (or available
outlier free data from which this can be obtained), (ii) slow subspace change as quantified
by (4.1) and the lower bound on the delay between subspace change times, and (iii) for
a period of time after the previous subspace change has stabilized, we assume that the
eigenvalues along the various subspace directions can be clustered into a few clusters. The
result of [85] required (i) and (ii) but not (iii). On the other hand, the PCP results [32, 33,
94] do not need any of the above. But they need other extra assumptions. They require
denseness of the right singular vectors of L and a bound on the maximum absolute entry

of the matrix UV’ where U is the matrix of left singular vectors of L and V' is the matrix

'In a period of length «, the set 7; can occupy index 4 for at most p3 time instants, and this pattern
is allowed to repeat every « time instants. So an index can be in the support for a total of pﬁt‘j%
time instants and the model assumes pg < % for a constant p. Thus an index 7 can be part of the

support 7T; for at most %tmax € O(tmax) time instants.

www.manaraa.com



105

of its right singular vectors. In our notation range(U) = range([F, Pinew - - - Prnew))-
We assume denseness of U but not of the right singular vectors.

Setting algorithm parameters. Our result needs five algorithm parameters to be
appropriately set. Some of these require knowing at least an upper bound on the model
parameters. Our result needs to know upper bounds on 7, Voew, 70,7, Tnews 0, and g*.
The PCP results need this for none [32] or at most one [33, 94] algorithm parameter. We
briefly explain in Sec. 4.8.1 how to set algorithm parameters automatically for practical
experiments.

Other work. A recent work that uses knowledge of the initial subspace estimate
but performs recovery in a piecewise batch fashion is modified-PCP [97]. Like PCP, the
result for modified PCP also needs uniformly randomly generated support sets which is
stronger than what we need. But, like PCP, it does not need the other extra assumptions
that ReProCS needs. Another somewhat related work is the algorithm and correctness
result of Feng et al. [66] on online PCA with contaminated data. This does not model
the outlier as a sparse vector but defines anything that is far from the data subspace as

an outlier.

4.3 Automatic ReProCS-cPCA

The automatic ReProCS-cPCA algorithm is summarized in Algorithm 4. It proceeds
as follows. It begins by estimating the initial subspace as the top 7y left singular vectors
of [my,my,...,my,. | Let P, denote the basis matrix for the subspace estimate at time
t. At time t, if the previous subspace estimate, ].f)t,l, is accurate enough, because of the
“slow subspace change” assumption, projecting m; = x; + £, + w; onto its orthogonal
complement nullifies most of ¢;. Specifically, we compute y, := ®,m; where ®, :=
I-P, P, Clearly, y, = ®;x; + b; where b; := &£, + ®,w; and it can be argued

that [|bg||2 is small: ||®£;||2 is small due to the slow subspace change assumption and
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|W¢||2 < €,. Thus recovering x; from y, becomes a traditional sparse recovery problem in
small noise [12]. We recover x; by [; minimization with the constraint ||y, — ®zlls < ¢
and estimate its support by thresholding using a threshold w. We use the estimated
support, ’YAZ, to get an improved debiased estimate of x;, denoted x;, by least squares (LS)
estimation on ’f; We then estimate #£; as @t = m; — X;. By the denseness assumption
given in Model 6, it can be argued that the restricted isometry constant (RIC) of ®,
will be small. Under the theorem’s assumptions, we can bound it by 0.14. This ensures
that a sparse x; is indeed accurately recoverable from y,. With the support estimation
threshold w set as in Theorem 4.2.8, it can be argued that the support will be exactly
recovered, i.e., T, = T;. Let e, := £, — £,. With this, it is clear that e, = (X — x¢) — Wy
satisfies

e =I5 [(®0) 7 (®:) 7] " Ir'by — wi = L5 [(®0) 7 (®1) 7]~ L7y @y + Wi) — wy. (4.4)
Using the bound on the RIC of ®, clearly ||(®¢)7'(®:)7'[|l2 < (1—0.14)7" < 1.2. Thus,
ledl2 < 1.2||bs||2 + €w, i.e., it is small too. In other words, £; is accurately recovered.

The estimates £, are used in the subspace estimation step which involves (i) detecting
subspace change; (ii) K steps of projection-PCA, each done with a new set of a frames
of Zt, to get an accurate enough estimate of the newly added subspace; and (iii) cluster
PCA to delete the old subspace by re-estimating the current subspace. At the end of the
projection PCA step, the estimated subspace dimension is at most r + r,ey, and after
cluster PCA, it comes down to at most r.

Subspace update. In the subspace update step, the algorithm switches between the
“detect” phase, the “pPCA” phase and the “cPCA” phase. It starts in the “detect”
phase. When a subspace change is detected, i.e. at t = fj, it enters the “pPCA” phase.
After K iterations of projection-PCA, i.e. at t = fj + Ka, the new subspace has been
accurately estimated. At this time, it enters the “cPCA” phase. Att = fj—i—Koz—l—(Q?—l—l)oz,
cluster PCA is done. At this time, it enters the “detect” phase again and remains in

itpuntil.the next subspace change is detected. We detect the j-th subspace change as
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follows. Let P, := 1553_71 +Kat(@+1)a- We detect change by comparing the eigenvalues
of LY .(T - 15*15*’)275@;(1 — P,P.) to a chosen threshold at every ¢ = uc when the
algorithm is in the “detect” phase.

Projection-PCA (p-PCA). We use projection-PCA to estimate the newly added
subspace. The reason this cannot be done using standard PCA is as follows [44]. Let >,
denote a sum over an « length time interval. Because of how £; is recovered, the error,
e;, in the estimate of £;, £;, is correlated with £,. This is evident from (4.4). Due to this,
the dominant terms in the perturbation seen by standard PCA, éZt 0.8, — ézt L8,
are ézt £/ and its transpose?. Thus, when the condition number of Cov(#;) is large,
it is not possible to argue that the perturbation will be small compared to the smallest
eigenvalue of Cov(£4;). With a large perturbation, either the sinf theorem [95] (that
bounds the subspace error between the eigenvectors of the true and estimated sample
covariance matrices) cannot be applied or it gives a very large and useless bound.

Projection-PCA addresses the above issue as follows. Consider the j-th subspace
change. Let P, := Py, |, Ppew := Py, new, and P, = f’gj_ﬁKaJr(ﬁH)a. Denote the time
at which this change is detected by ;. As explained in [85], it is easy to show that, whp,
t; < fj < tj+2a. After fj we use SVD on K different sets of « frames of the Et’s projected
orthogonal to P, to get K estimates of the new subspace range(Pey). We get the k-th
estimate, Ppey x, as the left singular vectors of (I — P*P*’)[Zfﬁ(k_l)aﬂ, . ,@iﬁka] with
singular values above a threshold. After each projection-PCA step, we update P, as
P, = [15* Pneka]. This ensures that the error e; is smaller for the next projection-PCA
interval compared to the previous one and hence the subspace estimates also improve
with each iteration. The above is done K times with K chosen so that, by t = fj + Ka,
the error in estimating the new subspace is below r,e(, which ensures SE; < r{ 4+ rpew(.

Cluster PCA for deleting directions by re-estimating the subspace. The next step

is to delete the subspace range(P;q) from P,. The goal of doing this is to reduce the

2When #; and e; are uncorrelated and one of them is zero mean, it can be argued by law of large
numbers-that;-whps-these-two-terms will be close to zero and é > . ere;’ will be the dominant term.

www.manaraa.com



108

subspace error from (7476 )¢ to r¢. The simplest way to do this would be to re-estimate

range(P,) by standard PCA, i.e. compute the eigenvectors of éZi?IEZE th with
)

eigenvalues above a threshold. However, since £; and e; are correlated, this will cause a
problem similar to the one described above. It will work only if the condition number
of Cov(#;) is small. This is impractical though since we assume that £; can be large but
structured noise. Hence we re-estimate the subspace by developing a generalization of
the projection-PCA idea that we call cluster PCA (¢cPCA). This relies on the clustering
assumption given in Model 8.

cPCA proceeds as follows. We first estimate the clusters as follows. We compute
the empirical covariance matrix of 2.’s after the new subspace is accurately estimated:
Esample = é Zzzjiﬁzi;y m; and obtain its EVD. Let 5\1 denote its ¢-th largest eigenvalue.
To get the first cluster QAj,l, we start with the index of the first (largest) eigenvalue and
Aj\l
i1

until the next eigenvalue A\;iy; < 0.25A . . We set QAJ-J ={1,2,...1}. To get the second

train*

keep adding indices of the smaller eigenvalues to it until > gt but % < gt or
cluster we repeat the same procedure but starting with the (i + 1)-th eigenvalue. We
repeat this until there is no eigenvalue larger than 0.25;\t_rain. Observe that g+ is set to
a value that is a little larger than ¢ (see Theorem 4.2.8). This is needed to allow for
the fact that )\; is not equal to the ¢-th eigenvalue of A but is within a small margin

of it. For the same reason, we need to also use a “zeroing” threshold of 0.25) (notice

train
that ﬁ]sample is not exactly low rank). This, along with appropriately setting ¢, and
with using the separation condition from Model 8 ensures that, whp, all the clusters are
correctly recovered.

Let G\, = (Pj)éj,k' Next, we estimate the subspace corresponding to the first cluster,
range(G ;1) by standard PCA on [25j+(K+1)a+1, . ,@,gj+(K+l)a+a}, i.e., by computing its
top \g}71| left singular vectors. Since the cluster’s condition number is small (bounded by

g"), this works. Denote the basis for the estimated subspace by CA;']-J. To estimate the

subspace corresponding to the second cluster, we project the next set of « 0s orthogonal
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to G4, followed by standard PCA to compute the top |G; | left singular vectors [44]. To
estimate the k-th cluster’s subspace, we do a similar thing but with projecting orthogonal

to the estimated subspace corresponding to the previous k — 1 clusters [44].

4.4 Proof Outline for Theorem 4.2.8 and Corollary 4.2.11

The proof proceeds by induction. Consider the j-the subspace change interval. Let
P, =Py, =Py 1, Puw := Py, new, and P, = ]T:)fj71+Ka+(,§+1)a. Assume that there
have been no (false) change detects in the interval [t; ; + Ka + (9 + 1)a + 1,¢; — 1].
Thus, f’tj_l = P,. Assume also that the subspace, range(P;,_) = range(P,), has been
accurately recovered, i.e., SE; 1 = dif(f’*,P*) < r(. Conditioned on this, we use the

following steps to show that, whp, the same conclusions hold at ¢ =¢;;; — 1 as well.

1. First, we show that the subspace change is detected within a short delay of ;. We

show that t; < fj <'t; + 2a whp. This is done in Lemma 4.5.28.

2. Att= fj + «, the first projection-PCA step is done to get the first estimate, Pnew’l,
of range(Pey). This computes the top singular vectors of [@fj _H,ij IPT ,ij +al
projected orthogonal to range(f’*). In the interval [t;,; +a — 1], the new subspace
is not estimated at all, i.e., P, = P, while P, = [P, PLew] and so SE; < 1.
Thus, the noise seen by the projected sparse recovery step, b, is the largest in
this interval. Hence the error e; is also the largest for the @t’s used in the first
projection-PCA step. However, due to slow subspace change, even this error is not
too large. Because of this, and because P, is dense, we can argue that f’new,l is a
good estimate. We show that dif ([P, Prew.1], Pew) < 0.19 < 1. Thus, at this time,
SE; = dif([f’* Pnew,ﬂ, [P, Ppew]) < r¢+0.19. This is shown in Lemmas 4.5.29 and

4.5.21.

3. At t = fj + ka, for k = 1,2,..., K, the k-th projection-PCA step is done to get

the Ak-th estimate, f’new,k. This computes the top singular vectors of [@gj H(h—1)at1s
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A A ~

4 (k-1)at2: - - - » i, +1a) Projected orthogonal to range(P.). After the first projection-
PCA step, P, = [f’* pnew,ﬂ and this reduces b; and hence e; for the £,’s in the
next « frames. This fact, along with the fact that e; is approximately sparse with
support 7; and 7; follows Model 4, in turn, imply that the perturbation seen by
the second projection-PCA step is even smaller. So f’newg is a more accurate
estimate of range(Pey) than lf’new,l. Repeating the same argument, the third es-
timate is even better and so on. Under the theorem’s assumptions, we can show
that dif([P* Pnew,k],Pnew) < 0.19 - 0.1 ! + 0.15rpew( and so, at t = fj + ka,
SE; <7 +0.19-0.1%! + 0.15r,cw(¢. This is shown in Lemmas 4.5.29 and 4.5.21.
The most important idea here is to use the fact that e; is approximately supported
on 7; (shown in Lemma 4.5.25) and the support change model on 7; (this is used

in Lemma 4.5.22).

4. The above is repeated K times with K set to ensure that, by ¢t = fj + Ka,

dif([f’* f’neW,K], Prew) < mnew( and so, at this time, SE; < (7 + rpew ).

5. In the interval [t; + Ka + 1,#; + Ka + (9 + 1)a], cluster PCA is done to delete
range(F; o14). At the end of this step, we can show that the bound on SE; has

reduces from (7 4 ey )¢ to r¢. This is proved in Lemmas 4.5.30, 4.5.31 and 4.5.21.

6. Finally, we also argue that there are no (false) subspace change detects for any
t €[t + Ka+ 0+ 1)a+1,tj,; —1]. This ensures that £;,; > t;,;. This is done
in Lemma 4.5.27.

To prove the theorem, we first show that the initial subspace is recovered accurately
enough, i.e., SE; < r( at t = tyan + 1, whp. This is done in Lemma 4.5.20. Then,
repeating the above argument for each subspace change period, we can obtain the sub-
space error bounds of the theorem. We set (., and « to ensure that the probability of

the good events is at least 1 — 3n~!°. The sparse recovery error bounds can be obtained
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by using these bounds and quantifying the discussion of Sec. 4.3. This is done in Lemma
4.5.25.

The main part of the proof is the analysis of the projection-PCA steps (for subspace
addition) and the cluster PCA steps (for subspace deletion). We explain its key ideas
next. Assume for this approximate analysis that w, = 0 and that dif(f’*,P*) =0
(previous subspace is perfectly estimated). In the k-th projection-PCA step the goal is
to bound Cpew i 1= dif ([f’*, f’new,k], Pew) conditioned on “accurate recovery so far”. Here

“accurate recovery so far” means dif (P, P.) ~ 0 and Cuewr—1 < (o r -

Before k£ =1,
there is no estimate of Py, and thus we have (pew,0 < C;rewp =1.

We first use the sin 6 theorem [95] (Theorem C.1.3) to get a bound on (yeyw . This is
done in Lemma 4.5.33. We then bound the terms in this bound using the matrix Azuma
inequality from [96] (Corollaries C.1.13 and C.1.14). This is done in Lemmas 4.5.34,
4.5.35 and 4.5.36. Using the sin @ theorem followed by using matrix Azuma for lower
bounding Awin (2 3°,(1 — P.P.)€£,(I — P.P.")), we can conclude that

perturbation
Cnew,k 5 1 A\ H H2

1—b2 “‘new

— € — ||perturbation||,
2|5 Sl = PP kel ], + |5 3, e
A — € = 2113 22, (1 = PP)Lel]], + 2] 2 3, evet],)

S (4.5)

Here perturbation = X Zt(I—P*P*’)Zt@;(I—P*P*’) — LS (I-P.P.)eL,(I-P.P."). S-
ince Zt(ét@;—ftﬁg) =", (Le}+el+ee)), the bound used in the second inequality above
follows. The next task is to bound the two perturbation terms using the matrix Azuma
inequality. This is done in Lemma 4.5.36. As explained in Sec 4.3, under “accurate re-
covery so far”, it can be shown that e, satisfies (4.4) and that || [(@t)ﬂ’(q)t)ﬁ]AH? < 1.2
This is proved in Lemma 4.5.25. Notice that, when w; = 0, e; is exactly supported on
T:. Using the expression for e;, expanding #; in terms of v,’s, processing as explained in

Sec 4.6.1, and applying the matrix Azuma inequality, one can show that, whp,

1 to+a—1 o . ,

t=to

. (ry?) 4 LargeTerm,,
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where tg = t; + (k — 1)ar+ 1 is the first time instant of the k-th projection-PCA interval

and

LargeTerm,, :=

t0+a 1 t
H_ Z Z th 2Tl)new-At newP:leW<I - 15*15*/ - I:)new,kflpnew,k71/>172 [(q)t)'ﬁl(@t)’ﬁ]ill:’ﬁluz-

t=tg T=to

In the above, € is very small (comes from applying Azuma for zero-mean terms). The
second term is also very small since 1/a < (rpew()? Thus, LargeTerm, is the only
significant term. To bound it, for & = 1, we use the fact that Pnew,k,l = Pnew,o =[]
and hence (I — PP,/ — f’new’k_lf’neka_l')Pnew ~ P,ew and P is dense. From Model
6, || Prew'L7;

(4.1), we get that, for k = 1,

H2 < 0.02. Thus, using ||[(®:)7(®:)7; 1||2 < 1.2 and slow subspace change,

t()-i-oc 1

1
||— tzt:() (I — P.P,/ EtetHz ||L8L1rgeTer1ran2 [ ——1.2:0.02- A\F
1.2-0.02-3X" =0.072 L AL

< :
T 10 1-0?

For &k > 1, we cannot show that (I — P.P./ — pnew7k,1PneW,k,1’)PneW is dense’.

Thus we use a different approach. We apply the Cauchy-Schwartz inequality (Lemma
C.1.6) with X, := 3¢, 0% 2 PrewArnewPhew (I = PuP./ = Prew i 1 Prews—1’) and Y, =
L7 [(®:) 7 (®:) 7] 17, followed by using Model 4 on 7; to bound Ayax (= tom*l Y.Y)).

to+a—1
It is easy to see that )\max Z XX} < maXHX 12 and || X ||, < - bz)‘:lrew w1
t=to

. 1

< 3aewp—17 — 2 -

to+a—1
1
We bound )\max Z YY) by using Model 4 on support change. This is done in

t=to

Lemma 4.5.22. This lemma exploits the fact that o Z Y.V, = o Z I ([(®) 7 (@) 7] 71)?
I’ is a block-banded matrix and, for each block, the summation is not over « frames but

only over 3 frames with [ being much smaller. For example, if Model 4 holds with p = 1,

3The partial result of [44] assumed that this holds and then used the above approach to get a
performance guarantee.
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this matrix is block diagonal; if it holds with p = 2, then it is block-tridiagonal and so
on. Thus, using ||[(®;)7'(®:)7] |2 < 1.2, we can show that Amax(2 32507 Y,Y7) <
$P25(1-2)2 < 0.0001 - (1.2)%

By Cauchy-Schwartz and the above bounds, we can conclude that, for k > 1,

t0+a 1
H— > (I-P.P))e||, < ||LargeTermy ||, < 1/0.0001 - (1.2)% - 3 -

t=to

1

—)\*
newk 11 b

1

= 0.036 - newk 1W

-

Using an approach similar to the one outlined above one can also bound the e;e]

term. This is actually easier to bound because one does not need Cauchy-Schwartz. For

k=1, we get
to+a—1
4 2 2 2 2 _
I3 t:;: eerl|, S p?B(1.2)° - 0.02 _b23>\ < 0.0001-1.44-0.02° - 35\
: 2 AT
< 0.0000 7
and for k£ > 1,
to+a—1
1= > ewlll, S8 (Ghva) T3 L 3\ <0.0001-1.44-3 - (Chy, Pt A
o t=to 2~ new,k—1 1-— b new,k—1 1_b2
21\
< 0075( new,k— 1) 1——l72

Using the above bounds in (4.5) and using A, > A~, we can conclude that,

2
+ <019 + < 2-0.036 - Cewk 1+OO75(Cnewk 1)

new,l ~o new,k ~

1 — NumeratorTerm

Here NumeratorTerm refers to the expression from the numerator. From the above, it is

easy to see that < 0.19 and, proceeding similarly, ¢ , < 0.19. Using this to get a

new,k ~

<0.1¢5, oy < 0.19-0.151,

new2 ~

loose bound on NumeratorTerm, we can conclude that ¢, <
The above approximate analysis ignores the fact that range( .) # range(P,). It also
ignores the unstructured noise term w; and the other small terms that come with each

application.of matrix.Azuma. With incorporating all this, and with using dif (f’*, P,) <

www.manaraa.com



114

r¢ (instead of zero), we can conclude that Cuewr < Croyy < 0.19- 0.1¥ ! + 0.157ew(. By
picking K carefully, we get that Ciew,x < Tnew( and thus SE; < (7 + mew)( after the
K-the projection PCA step.

The analysis of cluster PCA is a significant generalization of the above ideas. The

slow subspace change assumption is replaced by the clustering assumption at various

places in its proof.

4.4.1 Novelty in proof techniques

This work has two key contributions - it analyzes ReProCS with the deletion step
(done via cluster PCA), and it obtains a complete result for ReProCS and ReProCS-
cPCA for the case when the £;’s are correlated over time.

While the overall proof structure described above is similar to that used in [85],
the proof approach for proving the “main lemmas” is quite different for the correlated
£,’s case. The first such difference is seen in Fact 4.5.26 which shows how to bound
(I — P, P, )€;||2 for when £, is correlated over time. This is used to prove Lemma
4.5.25. The second and most significant difference is in proving the matrix-Azuma-based
lemmas for projection-PCA and for cluster PCA. These are proved in Sec 4.6 and 4.7.
The matrix Azuma inequality [96, Theorem 7.1] is significantly harder to apply than the
matrix Hoeffding [96]. There are two reasons for this. First we need to get the sums
of conditional expectations of quantities needed to apply this result in a form that can
be bounded easily. The simplest way of doing this can lead to loose bounds. To get
the desired bounds, we need to rewrite £; in terms of past v;’s and use the fact that
b* < (ryew() (is very small) and that S0, b < 1/(1—1b) < 1/(1—by) < 1.12. In
words, the contribution of very old v,’s is negligible and the contribution due to the last
a v’s is only slightly larger than that of one v;.

The third main difference is the analysis of the automatic cluster estimation step

and of the cluster PCA algorithm for deleting the subspace. The fact that the former
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is correct whp is shown in Lemma 4.5.30. This uses Lemma 4.5.38 and the separation
condition from Model 8 to show that, whp, the clusters obtained by using a threshold
of g* on the condition numbers of the eigenvalues of the empirical covariance matrix
computed with the 4,’s are exactly the same as the true clusters defined in Model 8. The
analysis of cluster PCA (Lemma 4.5.31) relies on matrix-Azuma-based Lemmas 4.5.39,
4.5.40, and 4.5.41. These are new too and are proved using a significant generalization

of the approach used for analyzing the projection-PCA step.

4.5 Proof of Theorem 4.2.8 And Corollary 4.2.11

We first give the most general denseness assumption and the most general model on
T; in Sec. 4.5.1 below. Next, we define quantities that will be used in the proofs in Sec.
4.5.2. The basic lemmas that are used several times in the proof are stated next in Sec.
4.5.3. The five main lemmas leading to the proof and the proof itself are given in Sec.
4.5.4. We then give the seven key lemmas that are used to prove the main lemmas in
Sec. 4.5.5, followed by the proofs of the main lemmas in Sec. 4.5.6. The proofs of the

key lemmas are the long ones and these are given in Sec. 4.6 and 4.7.

4.5.1 Generalizations

Consider the denseness assumption in Model 6. This can be generalized as follows.

Model 9. For a basis matriz P, define the (un)denseness coefficient
s(P) = I/P
rs(P) lr,r;fg;H 7 P2
Assume that

Kosyx = Max kos(Py;) < 0.3 and  Kogpew 1= MaX Kos( Py new) < 0.02. (4.6)
j j

Lemma 4.5.1. Model 6 is a special case of Model 9.
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Proof. Recall Model 6. For any basis matrix P, [,(P)]> = max; |P'L]||3. Using the
triangle inequality, it is easy to show that xs(P) < \/ski(P) [44]. Using this, the claim

follows. O

The proof of Theorem 4.2.8 only uses (4.6) for the denseness assumption.
The reason for defining the (un)denseness coefficient x4(P) as above is the following

lemma from [44].
Lemma 4.5.2 ([44]). For a basis matriz P, 6,(1 — PP") = (k,(P))".

Next consider the support change model given in Model 4. This is one special case
of the most general model that works for our result. This model was introduced in [85].
We explain it here. What we need to prevent is 7; occupying the same indices for too
many time instants in a given interval. If 7; does not change ‘enough’ in a time interval
of length «, we will be unable to see enough entries of a given index of £; in order to be
able to accurately fill in the missing ones. The following model quantifies ‘enough’ for
our purposes. The number of time instants for which an index is part of 7; is determined
both by how often this set changes, and by how much it moves when it changes. The
latter is parameterized by p which controls how much the set moves when it changes.
For example p = 1 would require that distinct sets be disjoint, and p = 2 would mean
that at least half of the set is displaced whenever it changes. The parameter ht € (0, 1)
represents the maximum fraction of time for which the set remains in a given area in
a time interval of length . The smaller A", the more frequently the set will need to

change in order to satisfy the model. Our result requires a bound on the product p*h*.

Model 10. Let p be a positive integer. Split [1,tmax| into intervals of length a. Use
Ju = [(u— 1)a+ 1,ua] to denote the u-th interval. For a given interval, J,, let T

fori=1,... 1, be mutually disjoint subsets of {1,...,n} and let Ty u,i=1,2,...,1, be
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a partition® of the interval J, so that

forallt € Tiyu, T € Ty YU Tiir)u Y U Tt p—1)u (4.7)
Define
hu (a; {’ﬁi),u}izl,...,lu?{\7(1'),U}i:1,...,lu) = i:fflffi_l |~7(z)u| (4.8)

and define hj(«) as the minimum over all choices of T and over all choices of the

partition J ) u-

hy () = min D, (0‘3 {’ﬁi),u}izl,...,lu? {-7(i),u}i:1,...,lu)

all choices of mutually disjoint 7(;) 4,4 =1,2,.. .1y
and all choices of mutually disjoint J(;),@ = 1,2,...lu

so that Uiilj(i),u = Ju and (4.7) holds

(4.9)

Assume that |T;| < s and that for allu=1,..., ’thﬂi];

07

.0001
hi(a) < hta with ht < 0 020 :
p

In the above model, h(«) provides a bound on how long 7; remains in a given “area”,
Tiiy,u Y Tii41),u U -+ - U T(i4p—1)u during the interval J,, for the best allocation of 7;’s to a
given “area” and the best choice of the “areas.”

Notice that (4.7) can always be trivially satisfied by choosing I, = 1, T, =
{1,...,n} and Ju)u = Ju, but this will give h,(c;.) = « and hence is not a good

choice. This is why we take a minimum over all choices.

Lemma 4.5.3. [[85]] Model 4 is a special case of Model 10 above with h™ = g

4.5.2 Definitions

Remark 4.5.4. Recall that ¥ is the maximum number of clusters from Model 8. For
ease of notation, henceforth, we will assume that there are ¥ clusters for all j. If 9; <9,

it will just mean that the last (0 —9; + 1) clusters are empty.

=

4,

ally disjoint intervals and their union equals J,
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Definition 4.5.5. Define b, := ®&;m; — ®;x;, = ®,(€, + wy). This is the “noise” seen
by the projected sparse recovery step of the algorithm.
Define e; to be the error made in estimating €;. That is e, := €, — ét. Thus, from the

algorithm, e; = (X; — X;) — Wy
Definition 4.5.6. Define the intervals
Ju = [(u—1Da+ 1,ual.

Define u; to be the u such thatt; € J,. That isu; := PE’-‘ . For the purposes of describing
events before the first subspace change, let ug := 0.

Define i; = taj Notice from the algorithm that this will be an integer, because detec-
tion only occurs whent mod o = 0. We will show that, under appropriate conditioning,
whp, U; = u; or u; = u; + 1.

For the cluster-PCA step, define the following intervals for k =0,1,2,...4.
Tiw=[t; + (K+1Da+(k—1a+1,{ + (K + a + ka

Notice that T; is where the clusters are determined, and Z; ;. is where cluster k is recov-

ered.
Definition 4.5.7. Define P = Py,
Py =P 1)y =Py, 1 and P pew = Py, new forg=1,...,J
a. =P vy and agpew = Pj)new' Vi fort € [t,t511).
Notice that a,, is a vector of length r;_1, whose last (r;_1 — rj ,q) entries are zeroes.

Also define

P j)adi = [P e Pj)neul
Thus, for t € [t;,t; + d], v, can be written as

Qy

)

vi =Pyas = [P« Pgnew]

at,new

www.manharaa.com




119

and Cov(v;) = X, can be rewritten as

/ At’* 0 P(J)»*,
2 =P APy = [Pg). Pg)new]
0 At,new P(j),newl

Notice that the last (;_1 — 7;0a) diagonal entries of A, are zeroes.
Remark 4.5.8. From Model 5, P ;). is orthogonal to P new-
Definition 4.5.9. For j=1,2,...,J and k=1,2,..., K define

A

1. 13(],)’* = Pfj_1+Ka+(ﬁ+1)a. If all subspace changes are correctly detected, this is the
final estimate of P . = P_1) and f)(j)y* = lstj_l. Let 15(1),* =P, (the initial

estimate).

2. P(j),new,o =[] and P(j)’new’k = f’fﬁka’mw. This is the k™ estimate of P ) new

(again, conditioned on correct change time detection).
3. ls(j),add = [f’(j)7* ls(j),new,K] is the final estimate of P ;) ada-
Notice from the algorithm that,
1. P.=Py. forallt € [t + Ka+ (0 + 1o, t; + Ka+ (9 + Do — 1]

2. lstynew = la(j),nemk_l for all ¢ € jﬁj+k for k = 1,2,... K, lst,new = P(j),new,K for

teltj+ Ka,tj+ Ka+ 9+ 1)a — 1], and Py e = [] at all other times.
3. At all times, P, = [f’t* Pt,new]-
4. lst_ly* 1 Ptmew at t = fj + ko and so 15(]-)7* 1 ls(j),new,k

Definition 4.5.10. Define G := (Py,)g,, for k= 1,2,...,9. The clusters G;. were
defined in Model 8. Thus P 1) = Pyy =Py, = [Gj1,Gj2,...Gjl.

Recall that Gj,k 1s obtained in the cluster-PCA routine of Algorithm 4. From the
Gl
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Definition 4.5.11. Define
1. (o = dif(P)., P).)
2. Gnewr = ([P« P news]s Py nen)
3. Gjuada = Aif (P () adds P j).ada)
4. G = dif (G ... Gjx], Gjx)-

Using the previous definition, clearly (1. < Zzzl Ejk

Definition 4.5.12. Define

1 Gh=r¢
+ i by ke
2. Claewo = 1 Clrewn = fork=1,2,... K where ba, ba,, and

ba—bai — by
by i are defined in Lemmas 4.5.34, 4.5.35, and 4.5.56 respectively. Their expres-

sions use € given by (4.14).

3. ;fadd = (7 + Thew)C.

- b,
4. G o= ok where bz ., bz, and by, | are defined in Lemmas
bar —Oars — bik ’ ’ o
4.5.39, 4.5.40, and 4.5.41 respectively.
We will show that these are high probability upper bounds on (i, Cjnewk: Cj,add, and Ej,k
under appropriate conditioning. We should point out that (', ;fadd, and C;’me’k do not

actually depend on j. However, when analyzing Algorithm 4 without the c-PCA step,

they do depend on j.
Definition 4.5.13. Define the random variable
Xu = {{V17 Va,... V’u,a}a {ﬁ}t:l,z...tmax}'

This is the random variable that we condition on (with appropriate choice of u) when

pdate steps - detection or projection-PCA or cluster-PCA.
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Definition 4.5.14. Recall from Algorithm 4 that

~

A
th h — train .
res —2

Also, recall the definition of D,, from Algorithm 4. For j =1,...,J, and for a = u; or

a = u; + 1, define the following events
e DETY := {i; = a}

e PPCAY, = {ﬁj =q and mnk(f’(]) newk) = Tjnew A G newt < Qj,newk} for k =

1 K

9o ey )

o CLUSTER; := {i; = a and i = Gy for k=1,.... 7}
o CPCAj, = {ﬁj =a and fj,k < E,j} fork=1,....9,

e NODETS] : {ﬂ = a and Apax (é’Du’Du') < thresh for all u € [4; + K + (J +

1)+ Lujn — 1]}
® I'gend :={C <reCkN {)\max (é’DuDu') < thresh for all u € [1,u; — 1]}
o [ =T | N DET
o It =17, NPPCAJ, fork=1,2,... K
° F;‘O :=I"} ) N CLUSTERY
. F“k =TI Gk1 NCPCAS, fork=1,2...9
S (fj;‘g N NODETS}“) U (fj;‘;l N NODETs;‘f“)

We misuse notation as follows. Suppose that a set I' is a subset of all possible values
that a r.v. X can take. For two r.v.s’ {X,Y}, when we need to say “X € I' and Y
can be anything” we will sometimes misuse notation and just say 44X, Y} € T.” For

example, we sometimes say X, € U'jena. This means Xy; 1 € Ujena and a; fort € J,,
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Definition 4.5.15. Define

1. Let Dj ey == (I — f’(j)’*f’(j),*’)P(j),new Qf EjewRjnew denote its reduced QR
decomposition, i.e. let E; ey be a basis matriz for range (Dj ney,) and let R yew =

!/
Ej,new Dj,ne'w~

2. Let Ej ey, be a basis matriz for the orthogonal complement of range(E; yew). To

be precise, E;yew,1 is annx (n—r;) basis matriz so that [E; new Fjnew, 1] i unitary.

3. Foru=1u;+k fork=1,...,K, define A,, A, |, A, as

Z E] new - (g) P ]) * )etft (I - (J),*P(j),*,)Ej,new
teju
1 .
= — Z Ej,new,J_,(I - P(]) * ]) * )Etﬁt (I - (j),*P(j),*,)Ej,new,J_
teJu

and let
Au 0 Ej,new,
A’“ = |:Ej,new Ej,new,J_:|
0 Au,J_ Ej,neW,J_/
4. Foru=1;+k fork=1,..., K, define M,, and H, as
M, (I_P(J P(J ( ZZM,:) I_P(J P(ﬂ)*)

teJu

and

H, =M, — A,

Remark 4.5.16. Recall the definition of D,, from Algorithm 4. Conditioned on F%, for

u=1u;+k, k=12,... K, f’m,l,* = f’(j%* and thus, for these values of u
1 /
-D, D, =M,,.
o

For these u’s M, is the matriz whose eigenvectors with eigenvalue above thresh form

la(j),new,k (see step 3b of Algorithm 4). In other words, M, has eigendecomposition

M EVD {A A A, O P(j),new,k/
0

P () newr P (j),newk, L

~ ~

/
Au | [ Pl et
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Definition 4.5.17. Define
1. Kgy = max; ks(P(j).) and Kspew 1= Max; Ks(P () new)-

2. kf, =03 and K7,,, = 0.0215. As we will show later in Lemma 4.5.23, k]

s,new s,new

upper bounds ||I7;"Dj pew||2 under appropriate conditioning.

3. ¢T = 1.2. As we will show later in Lemma 4.5.25, this upper bounds ¢; =

1[(®¢)7 (®:)7:] 7 |2 under appropriate conditioning.

Definition 4.5.18. Define ® ;)0 := (I — P(j)’*f)(j)’*/) and &y = (I — p(j),*f)/(j),* _
P(j),new,kf’(j),new,k') fork=1,2,... K.

Thus for t € [tj,fj + a] (before the first proj-PCA step), ®, = ®;)0, fort € T, 1k
(during interval used for k-th proj-PCA step), ®, = ®jyx—1, fort € [t; + Ko, t; + Ka+
(9+1)a] (after K-th proj-PCA step), ®, = ®;) i and fort € [t;+Ka+(9+1)a, tj41—1]

(after cluster-PCA step), ®, = ®(j11)0.

Remark 4.5.19. The proof uses Model 10 on T;. By Lemma 4.5.3, Model j is a special
case of it. In particular, this means that (a) Model 4 also implies p*h*™ < 0.01 and (b)
Model 4 also allows us to use the support change lemma, Lemma 4.5.22. This lemma
and the sparse recovery lemma, Lemma 4.5.25, are used to get bounds on quantities

containing e; in the proof of Lemma 4.5.36.
4.5.3 Basic lemmas
Lemma 4.5.20. Consider Algorithm 4. Under Theorem 4.2.8 assumptions,

dif(f)ttrain7 Pttrain) S TOC a’nd

0.8\ < A <12\

train

with probability at least 1 — n=19.
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This lemma follows in a fashion analogous to the proof of the p-PCA lemma, Lemma
4.5.29 (or actually just the proof of Lemma 4.5.34 which is one of the lemmas used to

prove Lemma 4.5.29). Tts proof is in Appendix C.2.

Lemma 4.5.21. [Bounds on ba,ba 1,b3k, Cjnewr and f,j] Consider the quantities de-

fined in Defnition 4.5.11. Under the conditions of Theorem 4.2.8,

1. ba — by > 0.8\ > 05X, = thresh and ba | + byy < 0.2 < 0.35A,, <

train

thresh.
2. Clowo =1, Gy <0.19, ¢y 019201571 4+ 0.15r00C for all k> 1.

3. ¢ < rjnC where rip = |Gl

This lemma essentially follows using simple algebra. We provide the proof in Ap-

pendix C.3. The proof of the second part is similar to that of Lemma 6.14 of [85].

Lemma 4.5.22. [Support change lemma [85, Lemma 5.3]] Let s; = |T¢|. Consider a
sequence of sy X 8y symmetric positive-semidefinite matrices A, such that || Alls < ot

for all t. Assume that the T; obey Model 10. Let M = Z I A Iz be ann xn matriz

te€Ju
(Z is an n x n identity matriz). Then

M|z < p*htac™ < 0.00010Ta

Lemma 4.5.23. [[85]] Assume that the assumptions of Theorem 4.2.8 hold. Conditioned

on X, 1r—1, for Xg;or—1 € F?f,;_l, for i; = u; or @ty = u; + 1,
117/ D newll2 < li::new = .0215 (4.10)
for all T such that |T| < s.

The following summarizes many simple facts.
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1. Observe that P?,o both for a = u; and a = u; + 1 implies that u; < 4; < uj + 1.
Thus, since t; = tija, in both cases, t; < t; < t;+2a. So with the model assumption
that d > (K + 2)a, we have that Ty, C [t t; +d| for k =1,2,... K, i.c., for

all the projection-PCA intervals, (4.1) holds and we can bound ||a;new||co bY Ynew-

2. Since, F?,K - P?,o) I’;?’K also implies that t; < fj < t; + 2. This along with
dy > (U + 3)a implies that all the intervals used for the cluster-estimation or the
cluster-PCA steps are subsets of the interval in which the clustering assumption

holds, i.e., [t; + Ka+1,#; + Ka+ (0 +1)a] C [t; + Ka+1,t; + Ka +ds).

3. Lemma 4.5.21, item 3, implies that, if C~j,k < C~,j fork =1,...,9, then (j11. =
dif(la(jJrl)’*,P(jH)’*) < 2221 5]',1@ < ZZ:1 rix¢ = 1;¢ < ;Zrl* This follows by

triangle inequality and the fact that ].f’(jﬂ),* = [G1,Gya,...Gy9) and Py =
P(j) = [Gj71, Gj,27 . e Gj’qg].

4. Thus the event I'j ena implies (i1, < (;ZFL*. Equwalently, I'j_q ena 1mplies (j . < ;r*

5. Thus, the event I'j o implies ;. < ;r* =1( fora=u; ora=uj.

6. Thus the event I'j, _, also implies this.

7. Lemma 4.5.21, item 2, and the choice of K in the theorem imply that ¢ <

Jynew, K —

TTLE’UJC ‘

8. Using the previous two items, the event I‘?”'K, both for ; = u; and 4; = u; + 1,

implies that dif(]?’(j),add, P} aia) < C;; + TnewC = ;,radd-

9. é < (rnewC)?. To see this, observe that the lower bound for o has (7pewC)? in the
denominator, and everything else in the expression is greater than or equal to 1.

(Notice that 7’/%1”2 >1)
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10. b* < (rpewC). This follows because b < by = 0.1 and so _lo_gl(ggzwo < _lfglgg";;”o =

1
log Tnewd < 1 1 < 1 < a
2.3 — 23 7new — (Thew()? — ~°

Lemma 4.5.25 (Sparse Recovery Lemma (similar to [44, Lemma 6.4] and [85])). Assume

that all of the conditions of Theorem 4.2.8 hold. Recall that SE; = dif(f’t, p,).
1. Conditioned on T'j_1 ena, fort € [t;, (G4; + 1)a]
(a) b = [(e)7 (o) 7] Hl2 < 67 = 1.2.
(b) the support of x; is recovered exactly i.e. T; =T, and e, satisfies:
e =0 — 4, = (& —x;) —wy = I [(®,) 7 (®,)7:] I/ ®,(£, + w,) — W,

(4.11)

(c¢) Furthermore,
SE;, <1, and
J’_
||et||2 S 1¢——b(2<-;t\/;7 + V T new Ynew + 26w) S 1.34 (2\/Z + V 'newYnew + 26111)

2. For k = 2,3,...,K and u; = uj or 4; = u; + 1, conditioned on F%_l, fort €
Ja;+x = [(U; +k — 1)a+ 1, (@, + k)a], the first two conclusions above hold. That

is, ¢y < ¢ and e, satisfies (4.11). Furthermore,

SE,; < ;;4— iy and

j,new,k—1 7
d)—i—
||et||2 S 1— b(2 ]—t—*\/;fy + ]ﬂ,—new,k—l V T'newVnew + 2€’w)

<1.34 (2.15\/2 4019 (0.1)* L nen + 2ew)

3. Fora; = u; ort; = u;+1, conditioned on F?,]'K, fort € [fj + Ka+1,t;+ Ka+ (9 + 1)a],
the first two conclusions above hold (¢, < ¢+ and e; satisfies (4.11)). Furthermore,

+
ledlls < 12 (G aaaV/y + 260) < 267V )
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4. Fora; =uj oru; = uj+1, conditioned on F]ﬁ, fort € [fj + Ka+ (0+1a+1,t4 — 1} ,

the first two conclusions above hold (¢; < ¢+ and e, satisfies (4.11)). Furthermore,

SEt<C+1*, and

2CH 1 VY + 26,) < 2.67(1/C + €4)

ledls < 2 (2

Notice that cases 1) and 4) of the above lemma occur when the algorithm is in the
detection phase; during the intervals for case 2) the algorithm is performing projection-
PCA; during the interval for case 3), the algorithm is performing cluster-PCA. In case 1)
new directions have been added but not estimated, so the error, e;, is the largest. In case
2), the error is decaying exponentially with each estimation step. Case 3) occurs after
the new directions have been successfully estimated but the old directions are not deleted
yet. Case 4) occurs after the latter has been done too (after cluster-PCA is done). Case
4) contains the smallest error bound, with case 3) bounds being only slightly larger. The
proof of this lemma is similar to the proof of Lemma 6.15 of [85]. It is given in Appendix
C.4. The main extra fact that we need to use now because the £;’s follow an AR model

is the following.

Fact 4.5.26. From Model 5, clearly ||€:|l2 < \1/—;2 Moreover, £; can be expanded as

follows.
t t—a
t—7 — t—T1
4 = Et,small + E b "Pra, where Et,small = g b v,
T=t—a+1 =0

Using the geometric series sum formula, b* < r,.,C, and the bound on ( from the theo-

rem,

b*y/r Tnew r
1€: smait]|2 < v < VY < V<
) 1—=9 1—b

Fort € [t;, (4; + 1)ar), conditioned on T'j_1 end,

TnewGVry 1 2r¢V/rY + VTnewYnew
B0, ||s = || D) 0l|o < P, a,|, <
[®:L:]2 = [[ () 0bel2 < =y 1= bl [®oPra- |2 < =5

2\/_ + vV rnew new
1-0
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For at € Juqr for k=2,3,... K, conditioned on F]Jk 1 for iy = u; or 4; = u; + 1,

TnewGV/T7Y 1
B8y 2 = || @) pilell2 < &, P.a.
[®Le]]2 = |P ) p-1£el2 < 11—y 1—[)76[?12)—‘Elt]” k-1Praz

27{\/_’7 + gneu} k—1V rnew’)/new
1—-0

2f+<newk 1V TnewYnew
1-b :

and the above can further be bounded by

Using < TpewC (follows using Lemma 4.5.21 and expression for K) and the

new, K

bound on ¢, fort € [t; + Ka+ 1,1, + Ko+ (9 + 1)a], conditioned on F?,jfo

(2rC + PaenOVFY _ 2VC
1-5 —1-0

[@ekill2 = () el <

Using Fact 4.5.24, item 3, fort € [t; + Ka+ (9 + 1)a+1,t,,, — 1], conditioned on f‘%,
G < Gy = 7C and s0

2r¢Vry _ 2VC
-6 =1—¢b

[@ll2 = [|@ (1) 0il]2 <

Recall that by :== ®,(€; + w,). Thus, using the above, we get that ||byl|a < || P2 +

|Wella < & (€ is set in Theorem 4.2.8).

4.5.4 Main lemmas for proving Theorem 4.2.8 and proof of Theorem 4.2.8

The first three lemmas below deal with analyzing the addition step. They have
statements which are exactly the same as the corresponding lemmas in [85]. But the
proofs of the key lemmas needed for proving them are very different since the £,’s are
now correlated over time. We thus relegate the proofs of these lemmas to the appendix.
The proofs of the key lemmas needed for these are given in the main text though. The
fourth and the fifth lemma below deal with the deletion step (cluster-PCA) and these

are new. These are proved in this section itself.

Lemma 4.5.27 (No false detection of subspace changes). Pr (NODETS? | 1;?719> =1

fora=wu; ora=u;+1.
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Lemma 4.5.28 (Subspace change detected within 2« frames). For j =1,...,J,
Pr (DET* | Ty 4t DET™ ) = pactt == 1= pa — pae.

The definitions of pa and pz can be found in the proofs of Lemmas 4.5.34 and 4.5.56

respectively.

Lemma 4.5.29 (k-th iteration of pPCA works well).
Pr (I’;’k | I‘?’k_l) =Pr (PPCA?’,c | 1“;,6_1) > Pppea =1 — DA — DAL — P

fora =wu; or a=wu;+1. The definitions of pa, pa,i, and py can be found in the proofs

of Lemmas 4.5.3/, 4.5.35, and 4.5.36 respectively.

Lemma 4.5.30 (Clusters are correctly estimated).
Pr (CLUSTER? | F(;’K) > DPcluster = 11— Pcl — Pre — Pee

fora =wu; ora =u;+1. The definition of pa can be found in the proof of Lemma 4.5.38

and definition of py,, pee can be found in the proof of Lemma 4.5.41.

Lemma 4.5.31 (Subspaces corresponding to each cluster are correctly estimated).
Pr (CPCA%, | T%,1) = papea = 1 = P4 — PaL — P

Jora=wji1 ora=wji1+ 1. The probabilities py, pa |, P4 are defined in the proofs of
Lemmas 4.5.59, 4.5.40, and 4.5.41 respectively.

Using Fact 4.5.24, ﬂzzl CPCAf,, implies that (1) < Q(J;.H),* = 7¢. Thus, I'§ 4

also implies this.
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Corollary 4.5.32. Let pget o := Pr (DET}” | Pj—l,end) . Combining Lemmas 4.5.27, 4.5.28,
4.5.29, 4.5.30, and 4.5.31 gives

Pr (Fj,end | Pj—l,end)
K 9

= Pr ((DET;.‘J' () PPCAJ; [ CLUSTER] () CPCA;;) U
k=1 k=1

K Y

(DET}” NDETY ™ (| PPCAY;" (JCLUSTER} "' ) CPCAjjjl) | Fj_l,end)
k=1 k=1

Z DPdet,0 - (pppca)K : (pcluster) . (pcpca)19 + (1 - pdet,O) * Pdet,1 - (pppca)K : (pcluster) : (pcpca)ﬂ

Z pdet,l(pppca)K * Pcluster (pcpca)ﬂ

Proof of Theorem 4.2.8 and Corollary 4.2.11. Using the fact that I'j_1 cng C I'j_2.ena ©
te g 1ﬂl,end g 1—WO,end7 Pr(FJ,end) = Pr(FO,end) H;‘Izl Pr(rj,end | 1ﬂj—l,end)-
By Lemma 4.5.20 and the argument used to prove Lemmas 4.5.25 and 4.5.27, we get

that Pr(Toena) > 1 — n % Thus, using Corollary 4.5.32, and the lower bound on «,

_ J
Pr(FJ,end) 2 (1 -n 10) (pdet,l(pppca)K : pcluster(pcpca)ﬂ)
>

2 (1 - n_lo)(pppca)(K+1)J(pcluster(pcpca)19) (1 - n_10)3 2 1 - 37’L—10.

By Fact 4.5.24, Lemma 4.5.25, and Lemma 4.5.21, I'j.nq implies that ﬁ = T; for all

times ¢; and that all the bounds on the subspace error SE; and on e; hold. O

4.5.5 Key lemmas needed for proving the main lemmas

The following lemma follows from the sin 6 theorem [95] (Theorem C.1.3 in Appendix

C.1) and Weyl’s inequality. It is taken from [44].
Lemma 4.5.33 ([44], Lemma 6.9). At u = 4; + k, if mnk(lﬁ’(j)’mw,k) = Tjnew, and if
)\min(Au) - ||Au,J_||2 - ||7‘Lu”2 > O, then

[Hull2
C',new, S .
! g )\min(Au) - ||Au,J_||2 - ||7.Lu||2

(4.12)
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Similarly, if C;j,k =G, and )\min(;&j,k) — ||AJkL||2 — ||7-L]k||2 > 0, then

] ||7~:lj,k||2 ]
Amin(Ajx) = [[AjrLll2 = [Hjkll2

Gk < (4.13)

The next three lemmas (4.5.34, 4.5.35, and 4.5.36) each assert a high probability
bound for one of the terms in (4.12). These, along with Lemma 4.5.33, are used to
prove Lemmas 4.5.28 and 4.5.29. The proofs of these lemmas use the matrix Azuma
inequalities (Lemmas C.1.12, C.1.13 or C.1.14 in the Appendix) and hence we refer to

them as the “addition Azuma” lemmas. Let

€ =

T 730-0017 e, (A (4.14)

Lemma 4.5.34. Define

2
ba = 1 _1 b2 ((1 - ((j)2))\;ew - (Tnewg)zli—bg(l - Cj)2>\’r_ww) —4e

Fork=1,... K, for all X441 € F?j'c_l with 4; = w; or t; = u; + 1,

Pr (Amin (Ag,+) > ba | Xajih-1) =1 —pa
where py is defined in the proof.

Lemma 4.5.35. Define

. 1

0.05(FpewC) 262 A~
baL =TT

X+ T 0 e

+ 4e

Fork=1,...,K, for all Xosx1 € U, with @y = uj or iy = u; + 1,
Pr (Amax (A 4r,1) <bas | Xajpn-1) =1 —pay

where pa | 1s defined in the proof.

Lemma 4.5.36. Define

bak = 2bge s + beek + 20m,
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where for k > 2,

0.05(7newC ) D2A~
. / 2 + + + + / 2 + At
bze,k . b2 h QS C >‘ + h (b Cnewk 1 new) (1 o bz)(l _ b)2 + Ge

Poois 1= 1_11,2 (1 (G PCPAT+ BT (6 (s ) M) + ?ffiz;}“f )fgz?);
+(67)(0.0670,C A7) + 8¢
bea = Gt ST
and for k = 1,
b = T VPIFG(CN 4 67KV ) + O,

1 0.05(7pewC ) b2A™
bewy = 254 (V2PN 4 2Rt ()2 A+ 2p,+
1 1 — b2 (p (Qb ) (C* ) + P (¢ ) ( s new) new) (1 _ b2)(1 _ b)2:0
+ (¢07)2(0.067 e (A7) + 8¢
1 0.05(7pewC ) 02N~
bpi = ——= (AT new 4
F.1 1_b2(C*) + (1_b2)(1_b)2 + de
Fork=1,...,K, for all Xg,,1 1 € F?’])c_l with 4; = uj or U; = u; + 1,
Pr (| Ha,+nll2 < bk | Xojan-1) > 1 — pu (4.15)
where P = Pee + Pee + PF and Pge, Pee and pg are defined in the proof.
Fact 4.5.37. Using p*h*™ < 1074, X < 3 M- > A\, ¢F = 1.2, k., = 0.0215,
b<0.1, ¢ <min{ MWF, G ﬁfrggﬁ} ¢ =71¢, €= 250.001r,0.¢,
\-
ba I (0.9999 — 0.0057,¢,,()
0.0087 0 CA™
< - 2
bars T
b1 <—— . 5(0.156 + 0.175cu()
ba i < T (0. 073Cnewk 1+ 0.176,0)

The following lemma is needed for the proof of Lemma 4.5.30.
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Lemma 4.5.38. Let t. := fj + Ka+ 1. Let qgo := 0.0\

cl+a 1
Pr ||— D b~ 2<J>||<qz|Xu+K >1- pa.

t= tcl

Jor all Xq, 4 € F;”K for i; = u; oruj+ 1 In the above, py is defined in the proof.

The next three lemmas are needed for the proof of Lemma 4.5.31. The third one

below is also used in the proof of Lemma 4.5.30.

Lemma 4.5.39. Define

(rnew§)2b2 1 _

T T e e

bas=1—r"¢*)(1 -

Forj=1,....,J and k =1,...,9, fora = wu; ora = u;+1, for all X4 x11)+x-1 €
F?,kfb

P (Amin(zzlj,k) >bay | X(aj+K+1)+k—1) >1—pjz

where p4 1s defined in the proof.

Lemma 4.5.40. Define

1 0.05(r e )b?

A= T GO+ M)+ (g e e

Forj=1,....J and k =1,...,9, for a = wu; ora =wu;+1, for all X4 x11)+x-1 €
F?,k—l)

Pr ()\max(Aj,k,J_) < bA,J_,k ‘ X(ﬁj+K+1)+k—1> > 1 —Pa1k

where py | . is defined in the proof.

Lemma 4.5.41. Define

bir = 2bgej. + beer + 205

Prewl)b? A~
where by, j, = \/P*hF (0)2 (125 (1 + Tew) C((rOAT + M) + % + Ge
bees = PPt (67)2 iz (FO) (1 + Tew) QN + SO0 4 (6)22(0.03¢A") + 8e

1 2 (r¢)? + 0.05(rnewl)b2 A~
by A >‘++W)‘k+1 + e T e
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Fork=1,....k, fora=u; ora=u;+1, for all X(g,+k11)+k-1 € f?,k—p
Pr (1Pl < by | Xoysaeanins) 2 1= p

where pg, = pg, + Dée + P and pg,, Dee, Pf are defined in the proof.
Also, for a=wu; ora=wu;+1, for all Xs, x € I'{ ¢,

1 ti+(K+1)a+1 1
Pr| 2l ~ Z el + 1~ > ey <bgy| Xajix | 21— pg — pee
t=t;+Ka+1 t

(This is used in the proof of Lemma 4.5.38. It follows using the exact same approach as

that used to bound ||H||s.)

Fact 4.5.42. Using p?h* < 1074, % < gt =3, ¢" =12, ki, = 0.0215, b < 0.1,
% <x*=0.2, ¢ <min{ (Ti(j;;)m (Tﬂfii’;;/w}, (F=re= ﬁ0.00lrnew(, we have

bas A_’; (09999 — 0.0057".,C) (4.16)

bai < %(0.2 4 0.077 o) (4.17)

bir < : )sz (0.072(7 + 7pew)C + 0.0957,4,C) (4.18)

4.5.6 Proofs of the main lemmas

Lemmas 4.5.27, 4.5.28, and 4.5.29 are proved in Appendix C.5. These use the first

three lemmas from the above subsection.

Proof of Lemma 4.5.30. In this proof, all of the probabilistic statements are conditioned

on X4k € F]uJK for 4, = u; or u; + 1.
Ecl‘i‘a_l
Let fo := f;+ Ko+ 1. Recall from Algorithm 4 that Zumpie == — Y £, Define
@ tzfcl
Ecl+a—1

1
Zlsample =

E Z etﬂt/.

tzfcl
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By Lemma 4.5.38 and Lemma C.1.11, under the given conditioning, with probability

(w.p.) at least 1 — pg,

1
)\max(Zsample - 1_—b22(])) S g2 ‘= 0.05A™ (4]_9)

Let kg = 0. Let k; denote the last index of cluster . Thus true cluster 1, G;; =
{1,2,...k1}, true cluster 2, G;o = {k1 + 1,k1 +2,...k2} and so on for all : = 1,2,...9;.
Recall that 3(;) has rank r; and so ky, = ;.

Consider “true cluster” 1. We need to show that “estimated cluster” 1, QAj,l =

A~

{1,2,...k1}. Let o=\ (ZSample). We will be done if we can show that

~

A
1. =~ < g* and
Ay

~

A
. 5\kl-l—l
Define

2 > gt

~

q = stample - z]sample 9

Using the fact that @t = £; — e; we get that
qg<2 lZEe' + lZee’
-~ o - t<t o . tCt

Using Lemma 4.5.41, Fact 4.5.42 and (r + Tew)CA; < (7 4 Tew)CAT < 0.0003A~ (from

the bound on (), under the given conditioning,

4 < 255 (0.072(7 + Fpew)C + 0.09570,C)
< 0.01A~
with probability at least 1 — p;, — pee Where py,, pee are defined in Lemma 4.5.41.
Using Weyl’s inequality and (4.19), fori =1,...,n

5\i = )\i(i]sample) S Ai(zsample) + Amax(ﬁlsample - 23sample)
1

1
_—bQE(j)) + )\max(zsample - 1——b2

X)) +4q

1
Ai(mx(j)) +q2+q
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and

A

S\i = )\i(zsample) Z )\i(zsample) - )\max(ﬁlsample - 23sample)

1 1
2 M3 20) — Amax(Bsample = 7—3580)) — ¢

1
Z Al —26) — e —a
The above strategy to bound )\i(flsample) was suggested in [98].

M (Ag))
Ay (M)

Thus, using the the fact that < g" =3and A\, (Ag)) > A~, we have that

Q + 1 (g9 (1-b%)
A < eMAG) Fetg 9T ikl(A(j)) g +(q2+‘1) 3+ 0.06

5‘_kl 1b2>‘k1(A )—Q2—q_ 1—% - 1_(qi_fq) _1—0.06:g+'
Similarly, using the lower bound % > x+ = 5 from Model 8,
M S _1- b2 MAG) — @ —q N )\k/\lljﬁx)(i)) _ (ji:rfl)&—(g“)) )\Z@i i‘(‘X()J))) _ (qu_rq)
LN R R I
BB 5006

1+ @ 14 0.06
This shows that the first cluster is correctly recovered. Proceeding in the same manner,

S\kifl'i‘l <g +(q2+q) <3+0.06:A+
N 1_@ =1-006 7

and

Moon o 3~ 5 5006

! - — 467> g
Nowr 1+ @ 14006 g

Recall that the clustering algorithm excludes all eigenvalues below 0. 25\ . Recall also

train®

that 3(;) has rank rank 7; = ky,. Thus from the upper and lower bounds on i given

above and using Lemma 4.5.20, we can also conclude that,

X,wjzA,Wj—qg—qu —0.06A" > 0.75A" > 0.25\ .

and

< My 11+ @2+ ¢ < 0+0.060" < 0.254;,

train
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Thus, the algorithm also stops at the correct place. We have shown that all of the
clusters will be recovered exactly and no extra clusters will be formed (algorithm stops

at the correct place). Thus,
Pr (CLUSTER? ‘ F;K) 2 Peluster := 1 — Pe1 — Pje — Pee
for a = u; or a = u; + 1. This proves the lemma. O

Proof of Lemma 4.5.31. Since we condition on the event F?’J,;_l and F?f,;_l C CLUSTER;” ,
the clusters are correctly recovered, i.e. QAM = G, . This lemma then follows by combin-
ing Lemma 4.5.33 with the bounds from Lemmas 4.5.39, 4.5.39, 4.5.41 and finally using
Lemma C.1.11. O

4.6 Proof Of The Addition Azuma Lemmas

4.6.1 A general decomposition used in all the proofs

A general decomposition will be developed here. We will use this in all the proofs that
follow. Consider an interval 7, and let tg denote the first time instant of this interval.
Let X = X¢o-1)/a = {0, V1, .- Vig—1, { Tt }1=1.2,. tmar }- L€t M and IN; be matrices that

are deterministic given X. Consider bounding

to+a—1

Z N8, M,

t=to

1

a
conditioned on X for X €.

From our model, notice that

t
b =070+ > VT,

T=to
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Thus,
1 to+a—1
— Y Nuw/M,
t=to
t0+a 1 t !
Z N, (bt t0+1£0 L+ th T ) (bt_t0+1£t01+ th_TV%> M,
t=to T=tg T=to
:=term1 + term?2 + term3
where
1 to+a—1
terml = o Z bz(t_t°)+2Nt(£t0—1£t0—1/)Mt
t=to
1 to+a—1 t
term3 = — Z Z VAT N (v o A £y V) M,
« t=tg T=to
to+a 1 t /
term2— > N, <Z bt_TuT> (Z b7 ) M,
t=to T=tg T=to
= term?21 4+ term22 + term23 where
| foxac 1t
term21 = Z szt N(v.v.) M,
t=tg T= to
t()—l—a 1

term22 = Z Z szt "N (v,Vi) M,

t=tg T=toT= t()
t()—l—a 1

term23— Z Z Z VTN (v, vk M,

t=tqg T=to F=7+1
We will show that term22, term23, term3 are close to zero whp, and that term1 can
be bounded by a very small value (proportional to 1/«). The only non-trivial term is
term21 and we will show how to (i) bound its spectral norm whp and, (ii) when N, = M
(so that this term is symmetric), how to also bound its minimum eigenvalue whp. For
all terms, except terml (which is a constant when conditioning on X), we will use the

matrix Azuma inequalities (given in Appendix C.1). We first show how to bound the
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near-zero terms. Consider term22. By Lemma C.1.8 (exchange order of double sum),

t0+a 1tgt+a—1 7—1

term22— Z Z Zb% TNy(v.vi) M,

T=to =7 T=lp
t0+a 1

Zz

T=to

To apply matrix Azuma (Lemma C.1.14), we need to bound || 2 SOTIRIZ | Zy, Zyy i1,

T=to

v Z,1,X]|]2 and || Z,|| conditioned on X. Now,

tota—1 7—1
E[ZT|Zt07 Zt0+17 R ZT—17X] = Z Z b2t777%NtE[VTV;‘Zt07 Zto—l—la ce ZT—lyX]Mt
t=r F=to

Consider Elv,vi|Zy, Z1y41s---,Z-—1,X]|. Notice that here 7 < 7 — 1. Thus, this
is a case a of E[WY|Z] where W is independent of {Y, Z} with W = v,, Y = v; and
Z={Z,,Z,+1,...,Z+_1,X}. Thisis true because Z, is a function of v;,, vy, 41,...,V;
and thus {Zy), Zy41,.... Z—1, X} = f(vo,vi,.. . ve 0 AT im0, 00, )- S0 {Y, Z} =
gwo,v1, .. . Vr_1,{Ti} i1 2. t.,) and this is independent of v, (by the independence

assumption from the theorem). Thus, by Lemma C.1.10, since v, is zero mean,
]E[VTV;—|ZI§07 Zt0+17 cey Z7-_1, X] = E[VT]E[V,/;|ZtO, Zto-i—la N ZT_l, X] =0

Also,

to+a—1 7—1

|1 Z,||2 < (max Z Zb% T max||Nt1/Tl/ M2

t=7 T=to

<b = b
= Uprob,term?22 -— (1 b2 )(1 — b)

maXHNtVTI/ M2

Thus by Azuma, conditioned on X, |[term22|| < € w.p. at least 1—(2n) exp <L>

32(bprob,term22 )2

Consider term23. By Lemma C.1.8 (exchange order of double sum),

t0+a ltg+a—1

term23— Z Z Z VTN (vavh) M

T=to =7 7T=7+1
This term is not in a form where we can apply the matrix Azuma inequalities to get a

useful-bound. But.we,can get it into a nicer form by a simple change of variables. Let
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p = (to + @ — 1) — 7 and use this to replace 7. Then,

a—1 to+a—1 t

1 —t0—a+p—7
term23=az Z Z p2t-t0—atp +1Nt(l/t0+a—1—p1//%)Mt

p=0 t=to+a—1-p T=to+a—p
a—1
1
= — g Z,
(07
p=0

To apply Azuma (Lemma C.1.14), we need to bound || Z;:& E[Z,|Zy, Z,,...,Z,_1,X]]2

and ||Z,|| conditioned on X. Now,

E(Z,|Zo, Z1,...,Zy 1, X]
to+a—1 t
= Y > VTN E W ac1—pVi| 20, Z1, - Zypey, XM

t=to+-a—1—p F=to+a—p
Notice that Z, is a function of V¢ +q—p—1,Vigta—ps - - - s Vig+a—1. Also recall that X =
{vo,vi,...vy1}. Thus, {Zo, Z4, ..., Z, -1, X} = f(Vo, V1, ... Vig—1, Vigta—ps Vigta—ptls
... Viyta—1). Notice also that 7 > ¢ty + o — p. Thus, the expectation above is again a
case of E[WWY'|Z] where W is independent of {Y, Z} with W = vy 10—p-1, Y = v; (for a
T>to+a—p)and Z ={Zy, Z1,...,Z, 1, X} = f(Vo, V1, ... Vig—1, Vigra—p Vigra—ptis
-« -y Vigra—1). Using, this, by Lemma C.1.10, E[v1a-1-pV5|Z0, Z1, ..., Z,—1, X] = 0.
Also,

to+a—1 t

HZpHS(m;?X Z Z =TT max || N g y o1V M2

- tpT
t=to+a—1—p T=to+a—p

1
< bprob,term23 = m ItIlfi:;( ||NtV7—I/;~_Mt||2

2

Thus by Azuma, conditioned on X, |[term23||2 < e w.p. at least 1—(2n) exp (¢)

32(bprob,term23)2

Consider term3. By Lemma C.1.8 (exchange order of double sum),

tota—1tog+a—1

1
term3 = o Z Z PN (b1 + £y V) M

T=to t=r1
to+a—1
1
i E Z.
o
T=to
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To apply Azuma (Lemma C.1.14), we need to bound |+ SOENRIZ N Zy, Ziyias -

T=tg

Z. 1,X]|2 and || Z,||2 conditioned on X. We can show that

E(Z,|Z0, Zigirs s Zo1, X]
to+a—1

= > VTOTINE[v Al + LV )| By, Zigs - Zry, XM, = 0.

t=1

This follows because Z, = f(v., X) and thus, {Zy,, Ziy+1,..., Z.—1, X} = f(vo, vy,..

v._1). Also, £;,_1 = g(X) = g(vo,v1,...,v4-1). Thus, this is again a case of E[WY|Z]
with W = | 2 Y = Eto—l = g(l/o,l/l, ce ;Vto—l) and Z = {ZtO,Zt0+1, o .,ZT_l,X} =

f(’/07V17"'aVT—1)-

Also,

1

ZT <bro erm3 = 75 7o%
“ ” = UYprob,term3 (1—b2)

Htléx(HNtVrEto—l'MtHz + | N £y 1V M ]|)

Thus by Azuma, conditioned on X, [[term3||s < € w.p. at least 1—(2n) exp (i)

32(bp'rob,te'rm3)2

Consider term1. Since £;,—1 = f(X) and everything else in this term is also a function

of X, this term is a constant given X. Thus we can bound it directly. We have

to+a—1

1
term1|y < — p2(t—to)+2 N8, £, M
[term1|[> < o ; te[tor,ltloaﬁhl] [N (€1, —1€1,—1") M |2
b2

— N (£, 1, ' \M
a(l =) te[t:}tloi)i—l] 1N+ (£rg 1 £001") M|

(raew()?0? /
W te[tor,rtloi}i—u [N+ (€ry—1£tg—1") M2 := bterma (4.20)

Consider term21. By Lemma C.1.8 (exchange summation order),

to+a—1tog+a—1

1
term21 = — VTN (v, V)M
erm o Z tZ:T: t(V VT) t

T=tg
to+a—1

1
= — Z,

To obtain an upper bound on its spectral norm using Azuma, we need to upper bound

15y Zr 1, X]||2 and || Z,|]2. To get a lower bound on its
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minimum eigenvalue we need to lower bound )‘min(i Zi":tz‘_l EZ\Z), Ziys1,---y Zr-1,X])

as well. We have

to+a—1
E(Z.|Zy, Zig1,- - B, X) = Y V" NEW VL Ziy, Zigi, -, By, XM,
t=1
to+a—1

_ Z b2t_2TNtETMt

t=T1
The last row follows because we condition on a function of {vg,vy,..., v, 1}, v, is
independent of all these and E[v,v.] = 3,. Then by applying Lemma C.1.8 in reverse

order, we get

1 tot+a—1 1 to+a—1tog+a—1
= Y ElZZy Zisr, . Zr, X == ) Y PTTNEM,
a T=tg a T=tg t=1
1 to+a—1 t
0 3 LRI AEY
@ t=tg T=to
Also,
to+a—1 1
||Z7'||2 < (mTaX ; bZt_2T) HtlélX ||NtVTVITMt||2 < bprob,term21 = mnﬁx ||NtVrV/TMt||2
Thus by Azuma (Lemma C.1.14), conditioned on X,
1 to+a—1 t
[term21], < ||~ DY VNI M|y e (4.21)

t=tog T=to

w.p. at least 1 — (2n)exp (#)

32(bprob,term2l )2

Let bierm21 denote the upper bound on the first term in the RHS of (4.21). Then,

conditioned on X,

1 to+a—1
”E Z Ntetet’Mt||2 < berm1 + brerma1 + 4e (4.22)
t=to

with probability obtained from a union bound.
Consider the special case when N; = M. In this case, + i‘):“:?_l N L,/ M, is a

symmetric matrix and so is term21. We can lower bound its minimum eigenvalue using
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Azuma Lemma C.1.13 to get that, conditioned on X,

t0+a 1t
Amin (term21) > /\mm > Y VPTTNE.N)) - (4.23)

t=tog T=to

—0462

w.p. at least 1 — (2n)exp ( 2). Let bjower term21 denote the lower bound on

32(bp7‘0b,te7‘m21)

the first term in the RHS of (4.23). Then, conditioned on X, we can conclude that

to+a—1
1

)\mm Z Ntet’et Mt) > blower term21 — 46 (424)

t=to
with probability obtained from a union bound. We get the above because of the following
reason. Since terml is symmetric positive semi-definite, Api,(terml) > 0. Since terms3
is symmetric, Api(term3) > —|[term3|| > —e. Since term2 is also a symmetric matrix
in this case, it follows that term22 + term23 = term2 — term21 is a symmetric matrix.
Thus Apin(term22 + term23) > —|[term22 + term23|| > —|[term22| — |[term23|| > —2e.

In the special case when N}, = M, = M, using Lemma C.1.9, the RHS in (4.23)
can be lower bounded by ﬁ(l — a(lb—sz)) MiN; ety to+a—1] Amin (M2, M) — €.

In the special case when N; = Ng and M, = M, the RHS in (4.21) can be upper
bounded by ﬁ mMaX,cfto to+a—1] ||[ VoS Mol|2 + €.

In the special case when N; = ®; and M; = &, I[(®,)7,/(®:) 7] I/, we can
apply Cauchy-Schwartz for matrices followed by Lemma 4.5.22 (support change lemma)
to the RHS of (4.21) to get the final upper bound.

In the special case when N, = M; = &, I1[(®;)7'(P;) 7] I/, we can directly
apply Lemma 4.5.22 (support change lemma) to the RHS of (4.21) to get the upper
bound.

4.6.2 A general decomposition for terms containing w;,

Consider bounding = Zt“o‘ ' N £,w,/ M, conditioned on X. Here X contains v;’s

for all t <ty — 1 and contains all the 7;’s. Using the independence assumption from the
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theorem,
E[Zt|Zt_1, Zt_Q, ceey Zto, X] = E[£t|Zt_1, Zt_g, ey Zto, X]E[W;] = 0

This follows by Lemma C.1.10 with W = w,, Y = £ = g(vo,v1,...,v¢) and Z =
{Zt—17Zt—2a "'7Zto7X} = f(wtmwto—i-b' <o, Wy—1,V, V1, .. 'th—1;7;77: - 1’27' . '7tma.x}

and using the fact that w; is zero mean. Also,
HNtetWt/Mt||2 < bprob,ltwt = m?X ||Nt£twt,Mt||2

Thus we can conclude by Azuma Lemma C.1.14 that

1 to+a—1
||a Z Nyw, M,||; < €
t=to

w.p. at least 1 — (2n)exp (32(17#)

prob,Lywy )2

Fact 4.6.1. In situations where it is not practical to assume that w, is independent of
T, the assumption of Remark 4.2.4 can be used. With this, we can proceed as in Sec.
4.6.1 above. There will be only two terms, terml = ézi‘;f—l Nt te, ywy' M, and
term?2 = éZioztf_l S N vow,. We can bound term1 as before by %ﬁ’yew

| N¢ll2||M;l|2.  Everywhere where we use this, ||Ny|lo||Myllz < 1.22 = 1.44. With

this and with using the bounds on €, and (, this is smaller than 0.0017,.,(A~ = €.
By Lemma C.1.8, term2 = éztgr;;_l Sttt NG v, W = %Zig’;_l Z.. No-
tice that{Z,, Ziys1, - Zr—1, X} = f(W0, V1, o, Vs, Wiy, Wigi1y -+ o, Wi a1, T7,T =

1,2, .. tmax) and so E[Z|Z,, Zyy11, ..., Z -1, X] is an example of of E[WY |Z] with
W independent of {Y, Z} if welet W =v,, Y =wy and Z ={Z,, Zyy41,- -1 Zr-1, X }.
Hence it is equal to zero. Thus, using Azuma Lemma C.1.1/ we can bound term?2 by €

whp. With this, whenever || Ny||o|| M|l < 1.2% = 1.44, ||§Zt°+a_1 N ow, M|, < 2¢

t=to

(instead of €).
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4.6.3 Proofs of the addition Azuma bounds: Lemmas 4.5.34, 4.5.35, and

4.5.36

We remove the subscript j at various places in this and later sections. Thus, for

example, ®(;) ;1 is replaced by ®;_; for k =1,2,.. K.
Definition 4.6.2. Let X = X = Xg, 451

Fact 4.6.3. Let Dyeypr—1 = Pr_1FPpew and D,y := ®,_1P,. Recall that D, =

Do = ®oPrew. When X, 111 € F?,k—1 fora=u; ora=mu;+1,
1. ||Dy g2 < ]+* fork=1,... K (this follows using Fact }.5.24).
2. | Dewp-1ll2 < (;;wyk_l fork=1,..., K+ 1 (by definition of F%_l).
3. Recall that Cf{ew,o =1.

4 Amin(RupewRnen’) = 1—(CH)? (this follows because |[PYPeylls = [Py (I=P. P )P ewl|2
<)

5. Enew/Dnew = Eneleneanew = Rnew and Enew,J_/Dnew =0.
6. I[(®)7' (@) 7] e < ¢F (using Lemma 4.5.25)
7. e, satisfies (4.11) with probability one (using Lemma 4.5.25).

Proof of Lemma 4.5.3/. In this proof all probabilistic statements are conditioned on

Xajrh—1 for Xg p1 € P],]l-c—l for 4; = u; or u; + 1. We need a lower bound on the

minimum eigenvalue of A, for v = 4; +k for k =1,2,..., K and 4; = u; or u; + 1. For

u = u; + k, recall that

1
Au = a Z Enewléﬂet‘et/i’OEnew

teJu
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Let ¢y be the first time instant of J3,1r. We proceed as in Section 4.6.1 with N L=

Mt = (I)OEj,new- ThU_S,

1
bprob,teer = max(bprob,term217 bprob,term227 bprob,term23) S W(TC\/F’Y + V Tnew new)2

1 2rC/T7Y + \/Tnew Tnew
bprob,term?) S (1 — b)2 ( C\/_fyl Iy )(T§\/7_”7 + vV Tnew7new)

<

(1 _1 b)3 (27(\/7_0’7 + VvV Tnew nevv)2

Use byrop to denote an upper bound on max(by,ob term2, Oprob terms)- Then

1
bprob = (1 — b)3 (27"(\/?’7/ + v/ Thew nevv)2

Using (4.24), (4.23) and Lemma C.1.9,

tota—1 t
)\min(Au) 2 )\min(l Z Z b2t_2TEnew/(I’OETq)OEneW) — 4e
a t=tog T=to
> ! (l—b—2) min - Apin(Epew PoX, PoE ey ) — 4€
= 1—b2 01(1—b2) relto tota—1] min new *0<~7 *¥0L/new

w.p. at least 1 —4 - (2n)exp (ﬁ) Using Fact 4.6.3, and Ostrowski’s theorem, we
pro

get

)‘min(EneWIQOET‘I)OEneW) = mm(RneW TnewR;ew) > )\mm(Rnew new))\min(AT,new)

> (1= (65 Ao

Thus, using 1/a < (rpew()?,

b2 + )\r:ew
1 b?
> by = ((1 (PP = OO0 = () ) —
w.p. at least 1 — pa with pa :=4 - (2n)exp (32@:—2)2) O

Proof of Lemma 4.5.35. In this proof all probabilistic statements are conditioned on

?,2—1 for @; = u; or u; + 1. We need to upper bound the
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maximum eigenvalue of

1
Au,L = a Z Enew,L/(I)Oet‘etl(I.OEnew,L-

tETu
Let ¢y be the first time instant of J3,1r. We proceed as in Section 4.6.1 with N P =

M, = ®yF, . Thus,

bprob,term2 - max(bprob,termﬂa bprob,term227 bprob,term23) = (1 — b)2 (TC)QT’YQ

1
bprob,termS < (1 — b)3 (27(\/;7)2

Use byrop to denote the upper bound on max(byrebterm2; Oprob.terms). Then

1 2
bprob = m(er\/;V)

Using (4.22), (4.21) and (4.20)

(Tnew()?b?
bierm1 = Wte[tﬁﬂﬁ—l} Amax(Enew,il‘I’O(eto—leto—l/)q)oEnew,J_)

(TaewC)?0?  (ry?) - 0.05(rnewC ) b2\~
T (1=02) (1-=0)2 " (1—=0)(1—0)2

(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and
1 tot+a—1 t
)\maX(Au,J_) S )\max(a tzt Zt bzt_QTEnew,J_/QOET(I)OEneW,J_) + bteTml + 4e
=to T=lo

1
max >\max(Enew,LIQOET@OEneW,J_)) + bterml + 4e

<
1 — b2 refto to+a—1]

w.p. at least 1 —4 - (2n)exp (32(_1)a62b)2)
'pro

Using Fact 4.6.3, Apax(Enew, . ®0X: PoE ey, 1)) < (r¢)?AT. Thus,

1 0.05(Tpew( ) b* A~
Ao (A, 2)\+ © 4e < b
( ,J_) > 1_b2(rC) (1—1)2)(1—5)2 Taes bal
w.p. at least 1 —pa 1 with pa s :=4-(2n)exp (32(_17::;)2) -
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Proof of Lemma 4.5.36. In this proof all probabilistic statements are conditioned on
Xajrh—1 for Xg4p 1 € F?’J;c_l for 4; = wu; or u; + 1. Using the expression for H,

given in Definition 4.5.15, and noting that for a basis matrix E, EE' + E . E,' =T we

get that
1 ) / / /
H, = — Z ((I)Oetet D) — (Polie/ Py + Poel,/ Pg) + (Fy + F, ))
teTu
where
Fy = Enew’lEneW7J-/(I)0£t£:€(I)OEnewEnew/-
Thus,

1
13 < zHa > utel (4.25)

1 1
+ H—Zetet' -I—QH—ZFt
2 @ t 2 « t

Next we obtain high probability bounds on each of the three terms on the right hand

2

side of (4.25) using the Azuma corollaries.
The £,e; term. Consider the first term. Using Fact 4.6.3 and the expression for e,

from (4.11),

1 1 1
— P le,/ = — Pl (L '®, I+ [(P,)+ (P Y P — Dl W,
O‘zt: okiet O‘Zs: oly (€ +w,) @ 17 [(®) 7, (Po) 7] 17 O‘zt: 0ktWy

= term + termw, where

1 _
term = — zt: DL D, 17 [(®,) 7 (®)) 7] 7,
1 1
termw = - Zt: Dl,w, D, 17 (D)7 (®y) 7] 117 — - zt: Do lw),

Here we use termw to refer to the sum of all terms containing wy.

By following the approach of Section 4.6.2, under the given conditioning,
[termw |2 < 2¢

w.p. at least 1 — 2 (2n) exp (ﬁ) where
'prob,termw
(21”’)/\/7_”’)/ + \/ Tnew neW)Ew

= (5") e
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We proceed as in Section 4.6.1 for term. In this case, N, = ®, and M; = ®;_,17,
[(®4)7(®4)7]) 17" Thus

1
bprob,teTmZ = max(bprob,teerD bprob,term227 bprob,term23) S m¢+(<jﬁ7 + V rnew’)/new)2

1
bprob,term?) < (1 — b)3 ¢+(2T<\/;’)/ + v Tnewanew)2

Use byrop to denote the upper bound on max(byrop term2, Oprob terms). Then

bPTOb = ﬁfr@rﬁﬁw + V T'new new)2

Using (4.20), (4.22) and (4.21),
R e i
terml — W
0.05 (FpewC)b2A~

- (1-0)(1—-0b)?

(FewC)?0® (r7?)
(1—=0?) (1-0)?

max @0y, 145, 1 P 117, [(P1) 7 (®0) 7] ' L7 [|2 <

(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and
to+a—1 t
[bermllz < ||~ DD VTR0 8 I5[(80)7 (@) 7] T |2 + brerma + 4e
t=to T=to

w.p. at least 1 —4 - (2n)exp (32(_l;a€2b)2)'
'pro

First consider the k£ = 1 case. In this case, ®,_1; = ®3. By Lemma 4.5.23, under the

given conditioning, ||Puew' ®ol7|l2 = [[17'®oPrewll2 < Ko = 0.0215. Using this and
Fact 4.6.3,

S S B T )] T e € 0 (A )
@ 2 2 027 Iz [(P) 7 (R) 7] I7lle < T3 . s new new

and so for k =1,

1

1 ) 0.05(rnewC ) b2A™
I~ ztj Botie/|ls < T30 ((CPA 4 ke Niew) +

(- )1 b

+ 6¢

2

. —ve? et
vith pee := 4 - (2n) exp (32(bprob)2) +2-(2n)exp (32(b )

2
prob,te'rm'w)
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For k > 1, we cannot use Lemma 4.5.23. Thus, we follow a different approach - we use
Lemma C.1.6 (Cauchy-Schwartz for sums of matrices) followed by Lemma 4.5.22 (support
change lemma). Let X, := Y|, "7 ®,%.®;_; and Y, := Iy [(®,)7'(®:)7] 17"
Then by Lemma C.1.6 (Cauchy-Schwartz),

to-i—oc 1
||— > Zb2t @)X @4 L7 [(P0) 7 (o) 7] I |2
t=tg T=to
t0+a 1 t0+a 1
SRS SIF S CINNER SR et
t=to t=to

Now,

2
1 to+a—1 t -
Amax(~ Yo XX < max | Xl” < | D00 max [ @05, |

t=to
<
< (15

By Lemma 4.5.22 (support change lemma)

T=to

2
((C+) >‘+ + newk 1)\ITGW))

1 to+a—1
)‘maX(a Z Y.Y;) < pPht(67)%

t=to

Thus,

to+a 1

||— > szt T X DIz [(R1) 7 () 7] L |12

t=tg T=to

p2h+(¢+)2 (%((g-ﬁ-) )‘++ new,k— 1)\:ew)>

and so for k > 1,

| , 1 0.05(FewC)b2A~
Ha Z q)()»etet “2 S V ch+(¢+)2 1 — ((C+) )\+ + newk 1)‘:ew> (1 _(b2)(1)_ b)2 + Ge
t

with probability at least 1 — pge, Wwhere

2

—32(_bpmb)2> +2-(2n)exp (

—ae?

32 (bprob,termw ) 2 )

Pee := 4+ (2n) exp (
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The e,e} term. Consider the second term. Using Fact 4.6.3 and the expression for

e, from (4.11),

1
= E e.€; = term + termw, where
o)

t

1
term := — D 1507 (B1) 7] Ty By (£]) B T7, [(D0) 7 (B1) 7, )T
t
R 1 / -1 l / / /
termw := - ZI%[(‘I’t)Tt (@) 7] I, @1 (—wWyw, — £ywy) + Wywi+
t
1
= D (waw; — Wil @y T (@) (1)) T+
t

1
p Z I [(®0) 7 (@) 7] I ®ror (Bewy + wowy + wWilly) By (L7 [(B1) 7 (®1) 7] 'L
t

Consider the wyw} part of termw. Let N, = I [(®;)7/(®;)7]| I, ®;_;. Using Lemma

4.5.22 (support change lemma), the bound on €2 and Lemma C.1.6 (Cauchy-Schwartz),

1 1 1
123" Nl < \/ 230 NNl S wowtwiwl < VARG
t t t

Using Lemma 4.5.22 (support change lemma), we have
1
1230 NowwNills < o2 (676,
t

The £,w; in termw can be bounded by € using the approach of Section 4.6.2. Thus, using

the bound on €2 from the theorem,
[termw]|o < (1 + 2/ p2ht ot + 20°hT (¢7)?)(0.03¢A7) + 4e < 2(¢1)?(0.03¢A™) + 4e

w.p. at least 1 — 4 - (2n)exp ( —oc

32(bp'rob,te'rmw)2

(QTC\/;’Y + vV Tnew’)/new)ew
1-b '

) . Here

bprob,termw = (¢+)2

For term, we proceed as in Section 4.6.1 with N} = M, = &, 117 [(®,) 7/ (®:)7]) 17 .
Thus,

1
bprob,teTm2 - ma'X(bprob,teerD bprob,term22; bprob,te’rm23) S (1 _ b)2 (¢+)2(Cj\/;’7 + V Tnew new)2

b S 0 2(27’4_\/;’)/ + vV Tnew new)2
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Use byrop to denote the upper bound on max(bpreb term2; Oprob.terms). Lhen
1
bprob - m(¢+)2(27ﬁ§\/}7 + V Tnew nevv)2
Using (4.20), (4.22), (4.21), we get

(TaewC)?0? 172 <0.05(rneWC)b2)\’

bierm1 < (1-=0%) (1-0)2" 1-01)(1—0b)?

(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and

1 to+a—1 t - B )
termls <[~ > T { Y 0" (@07 (®0)7] T xS kT (@) (Re)7) ) Tl

t=to T=to

+ bterml + 46

w.p. at least 1 —4 - (2n)exp (ﬁ) By using Lemma 4.5.22 (support change
lemma) and Lemma 4.5.23 for kK = 1 and by using only Lemma 4.5.22 (support change

lemma) for k£ > 1, we get

1
=D eelllz < bee
«
t

€2

w.p. at least 1 — pee With pee := 4 - (2n) exp (32(;:76)2) +4-(2n)exp (W)
The F; term. Consider the smallest term, Hé > Ft”2 = || Enew 1 Enew, . ®olily B E peny
E.'||2. We again proceed as in Section 4.6.1. In this case N; = E oy | Fpey 1 '®o and

M, = ®yE, .. E,.,'. Thus,

bprob,term2 S (1 _1 b)2 (C:—\/F/Y) (QCJ\/;V + vV Tnew new)
bprob,term3 S (1 _1 b)3 (C:—\/F'V) (QC:_\/"_MY + V Tnew new)
and so
bPTOb = (1 _1 b)3 (C:r\/;fy)(zélj\/;’y + V Thew new)

0.05(Fpew( b2\
(1—02)(1 — b)2

1 1
=Y Fulla € -5 (A" + + de
t

w.p. at least 1 — pp with pp := 4 - (2n)exp (ﬁ) Combining the bounds on the
pro

(4.25) we get the final result of this lemma. O
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4.7 Proof Of Deletion Azuma Lemmas - Lemma 4.5.38 And

Lemmas 4.5.39, 4.5.40, 4.5.41

4.7.1 Proof of Lemma 4.5.38

Proof of Lemma 4.5.38. In this proof, all of the probabilistic statements are conditioned
on Xg, i for Xg, 4 i € F;L’K for 4; = u; or u; + 1.

Let t := t.. Using Fact 4.5.24, under the given conditioning, for all t € [to, to+a—1],

E[th/;] = Et = E(j) = P(j)A(j)P(j)/ (4.26)
We need to bound f = |2 370097 0,6 — 255 ||2. Let
. 1 -
€= 1 b20.001rneng

To do this we can proceed as in Section 4.6.1 with N, = M, = Z but with one

change. We include the constant term —#E(j) in term21. Thus,

2 2
bp'rob,te'er S (1 — b)2 (\/F’V)

1 2
bprob,termS S (1 — b)3 (\/F’}/)

Let
to+a—1 t

1 e 1
L S S N M

t=tg T=to

Using (4.20), (4.22), (4.21), we get

(Pnew()?b?
bterm1 = W

(TaewC)?0*  (17?) < 0.05(TpewC )0 A~

/
<
m?x 1€, —1€1,—1"|]2 < (1=0%) (1-0)2 " 1-0*)(1—-0)?

and
[ < frerm21 + brerm1 + 4e
w.p. at least 1 — 3 - (2n) exp (L) — (2n) exp ( —ae? )

32(bp'rob,term2)2 32(bp'rob,ta'rm3)2
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Since ¥, = X(;) := P AP ;) for this interval, using Lemma C.1.9 and using the
bound on 1/« from Fact 4.5.24,

tot+a—1 t

1 o 1
fterm21 - ||a Z Z b2t 2 E(g) — —1 — b2 E(])”?
t=tg T=to
1 1 0%(1 — b*) 1
— 1227 Ny
||1—b2( a 1—0p2 ) @) T 1 2 (J)||2
<Ll £ (e A € (w005
=4 (1 — b2)2 G2 = Tnew (1 — b2)2 S (Thew (1 — b2)2 .
Thus,
b? 0.05(rnewC ) b2\~
< ———0.05\" 4e <
o ae?(1-b)8
w.p. at least 1 — pg where pq :=4 - (2n) exp <— T > O

4.7.2 Definitions and preliminaries for proofs of Lemmas 4.5.39, 4.5.40,

4.5.41
Definition 4.7.1. Define
1. Gjiaet =[] and for k=2,3,...9, Gjkaet = [Gj1 Gj2 ... Gjr_1].
2. Define Gjpundet = |Gjrs1 Gjigsz - Gjo,], Girew = Gjg;

A A

3. Deﬁne Gj,l,det = [] and Gj,k,det = [Gj,l Gj,g Ce Gj,k—l]
o ~ - . _
4. W =1 —GjrdetGjraet); thus W1 =71
5. Dj,k,cur = lIlj,kC"Yj,k,cur; Dj,k,det = \Ilj,ij,k,det; Dj,k:,undet = ‘Ilj,ij,k,undet;'

Definition 4.7.2.

QR . .
1. Let Djjcw = Yk Gjrenr = Ejkouwdljpcnr denote its reduced QR decomposition.
S0 Ejjcur 15 a basis matriz, and Ry o 15 upper triangular. Let Ejj cur,1 be a

basis matriz for the orthogonal complement of range(E; k cur)-
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2. Using Ejjcuwr and Ejj o 1 , define

1
7,k - — 7,k,cur j,k'et‘et 7,k 3,k cur

tefj,k
A= E L PVNEL Y D
gk, L - — a Jk,cur, L kLt F 5 LS5k cur, |
tEij,k
and let
A /
~ Aj,k 0 Ej,k,cur
Aj7k = Ej,k,curEj,k,cur,J_ ~ ,
0 Ajir| |Ejreurs
3. Define

1 R -
Hj,k: = E Z \I’j,k»etetl‘:[’jyk - Ajyk

tEij,k
From Algorithm /,
1 P EVD | o = A0 Gj,k/
E Z ‘Ilj,ketet/l:[’j,k = |:Gj,k G’j7k7j_:| . R
— 0 Air| |Gyl

Lemma 4.7.3. [44] When X4, +rk11)1k—1 € f‘?,k—l with a = u; or a =u;+ 1,
L ||Djkdetll2 < ¢

2. V 11— (T)2C2 S Ui(Rj,k,cur) - Gi(Dk,cur) S 1

r¢)?
B, D PR GV
3 ||Ej,k,cur DJ,k,undetH? V1= (M2
4.
- 1 r 97
Aiger O 0 D} det
‘Iljykzt‘llj,k = [Dj,k:,det Dj,k,cur Dj,k,undet] 0 At,cur Djakacur
0 0 At,undet Dj,k:,undet

with Amax(At,det) S )‘+: )‘J_,k S Amin(At,cur) S )\maX(At,cur) S )\;:k; Amax(At,undet) S
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5. Using the first four claims, it is easy to see that

(a) || E;kcur, ¥k, 1 Ej pcur,1 |2 < (7’()2)\++)\;+1 (when k =1, the first term

disappears)

)2
(b) ||Ej,k,cur,J_,\Ilj,kEt\Ilj,kEj,k,curH2 S (TC)Q)\-F + \/%)\kﬁf—l (when k = 1, the

bound equals zero)
(¢) 1552 xll2 < ((rOAT + XD + Tnew)C

(d) [|®;x2e®j i lla < (7 + Thew)C)? AT

Proof. Consider the first claim. When k = 1, Gy 4ot = [.] and hence D) ge = [.]. Thus
|Djkdetll2 = 0 < r(. For k > 1, it follows by applying Lemmas 4.5.31 and 4.5.21
applied for k = 1,2,...,k — 1. The next two claims follow using Lemma C.1.1. Notice
that Dy ey = ¥, 1Gjkcor Where W, = (I — CA}’j,k,detG’M,det'). Use item 4 of Lemma

C.1.1 and the fact that Gt get' G kcor = O to get the second claim. For the third claim,

-1

, . :
ke Gikenr ¥ikWi kG kundet- Use the previous claim

notice that E;j cur’ D kundet =
to bound ||R;,1,Cur||2. Use item 3 of Lemma C.1.1 and the facts that G,k det’ Gjgcur = 0
and G idet’ Grundet = 0 to bound |Gk e’ ¥ kll2 and || W, Gk undet|l2 respectively.
When k = 1, both the above claims follow even more easily: Dy oy = Giewr and so
0i(Dycur) = 1 and thus satisfies the given bounds; also, Ej cir = Gicor and Dy yndet =
Giundet and thus, || Ej k cw’ Dk undet|]2 = 0 < \/%

The fourth claim just uses the definitions and Model 8. [

4.7.3 Proofs of Lemmas 4.5.39, 4.5.40, 4.5.41

We remove the subscript j at various places in this section.

Proof of Lemma 4.5.39. In this proof all probabilistic statements are conditioned on
X(aj+K+1)+k—1 for all Xa;+K+1)+k-1 € f?,k:—l with @ = u; or a = u; + 1. Recall that

Ak = 1 thj’k Ek@ur"llkﬁtﬁt'\IlkEk’wr. We proceed as in Section 4.6.1. In this case

T«
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N, =M, =V, E} ., and t is the first time instant of ij,k. Thus,

tota—1 t
)\min(Ak) Z Amin(l Z Z bzt_2TEk,cur/‘I’k2‘r\I’kEk,cur) —4e
« t=tg T=to
> L (1 — b2 ) min Ami (Ek ’lIlkZ ‘I/kEk ) — 4e
=1 _p2 a(l — b2) reltortota—T1] min cur T cur

2

with probability at least 1 —4 - (2n) exp (—%), where byop = (1—7_“7@.
prob

Finally, using Lemma 4.7.3 and Ostrowski’s theorem,

- 1 b? -
Amin (Ar) = 1= b2(1 - m)(l — (rQ)")A,

O

Proof of Lemma 4.5.40. In this proof all probabilistic statements are conditioned on
X(ﬂj+K+1)+k,1 for all X(ﬁj+K+1)+k,1 € f?,k—l with a = U; O @ = Uy + 1.
Recall that Ak,J_ = é Zt Ek,cur,j\Ilkﬁtﬁt'\IlkEk’cunL.

We proceed as in Section 4.6.1. In this case N}, = M, = W Ej .. Thus,

(Tnew<)2b2 ’ ’ (rneWC)2b2 (7’72)
_ \ hews>/ 7 <
bterml - (1 — b2) te[tor,rtloajz(afl] )\max(Ek,cur,J_ \Ilk(eto—leto—l )\IlkEk,cur,J_) >~ (1 — b2) (1 — b)2

_ 0.05(ruewQbA~
T (1= -0

(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and
. 1 tota—1 t
)\max(Ak,J_) = Amax(a tzt: Zt bzt_zTEk,cur,J_/lI’kET‘I’kEk,cur,L) + bterml + 4e
=to T=lo

1
max )\max(Ek,cur,J_,lI’kE‘r‘I’kEk,cur,J_) + bteTml + 4e

<
1 — b2 refto,tota—1]

with probability at least 1 — 4 - (2n) exp (—32%—5217), where by,.op = ﬁ.
pro

Thus, using Lemma 4.7.3,

2\ —
Amac(Ap 1) < 0.05(FpewC )2\

(IR

1—02 ((rOPAT + X)) +
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Proof of Lemma 4.5.41. In this proof all probabilistic statements are conditioned on
Xa;+x+1)1h—1 for all X,y xy1)1n-1 € f“;’k_l with @ = u; or a = u; + 1. Recall that
v, =1

In a fashion similar to the proof of Lemma 4.5.36, we can show that

1 1
+H_Zete; +2H‘2Ft
2 Q t 2 « t

(4.27)

2

~ 1
Il <2 2 50 watie/
t

where
Ft = Ek,curEk‘,cur/lIlketh/\IlkEk,cur,J_Ek,cur,J_/-
We now bound the three terms above.
Consider ||[£ 57, ¥,£,e/||. Using Lemma 4.5.25, e, satisfies (4.11) with probability

one under the given conditioning. Thus,
é zt: U Lle, = é Zt: U L,(L 4+ w,) B Ly [(®,) 7 ()7 I — é Zt: U LW
= L D LR AT (@)r (@) D Wl (@) (207
I — é Xt: 00w,
= term + termw

Here termw refers to the terms containing w;. By following the approach of Section
4.6.2, under given conditions,

[[termw |2 < 2¢

w.p. at least 1 — 2+ (2n)exp (ﬁ), where

32(bprob,termw)2

ot Vryew

b rob,termw —
D El 1 _ b

We proceed as in Section 4.6.1 for term. In this case Ny = Ng = ¥, and M, =
D17 [(®,) 7 (Py)7;]) 17" Thus,

(ruew()?0* ¢ (ry”
bterml S (1 — b2) (1 _ b)

0.05(Fpew)b2A™

)
PSR-y
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(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and
1 to+a—1 t
[termlly < [[= > Y 0 TUE DAy [(®))7 (B0)7) T Tr o+ brermn + de
a t=tg T=to
w.p. at least 1 —4 - (2n)exp (ﬁ), where
b YA + Tnew)C
p?"ob - (1 o b)2
Let
1 to+a—1 t t0+a 1
- SN P E eI (B (R Ty = — Z X,Y!
t=tg T=to t=to

where X, :=3 ", 07,5 &k and Y, = I5[(®,)7/(®:)7] 'I5;". By Lemma 4.5.22
(support change lemma) Amax( > 'Y, Y) < pPht(¢h)2
By Lemma 4.7.3 and the fact that |®x P2 < ¢ = r¢ and || @ g Puewll2 < rnewl,

1t0+a 1
)\max Z X X ) < InaX“)(t“2 (

t=to

1 —p2 (r + Toew)C((rOAT + A:))Q

Thus, by Cauchy-Schwartz for matrices,

1 tota—1 t

p2h+(¢+)2( (T+Tnew)C((TC))\+ + )\2-))

1—0?

Thus, with probability at least 1 — p,
1 /
— Z ‘I’ketet <
o 9

where p, =2 - (2n) exp (—_"‘62 2) +4-(2n)exp (—32(%;2‘2;“)2)

32(bprob,te7‘mw)

0.05(Fpew( )b2A

p2h+(¢+)2( (1 _ b2)(1 . b)2

(1 + Taew)C((FOAT+ X)) + +6e

1—0?

Next consider the e e term.
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Recall that, under the given conditioning, e; = I [(®;)7/(®) 7] 17, ®x (€ + W) —

w;. Thus,

1
= E e.€; = term + termw, where
o)

t

1
term := — D 1507 (B1)7] Ty B (€)@ T [(B) 7, (B0)7.) ' T
t
1
termw := p Z I [(®,) 7 (@) 7] I @k (—ww, — £,w)) + w,w)+
t
1
> D (—wiewi — Wil @ I7[(2) 7 (@) 7] ' Tn +
t

1
p Z I [(®0) 7 (®0)7) I @ (€rwy + wewy + Wil L7 [(®4) 7 (D) 7] 17y
t

For the w,w, part of termw, let N; = I[(®;)7/(®;)7] I,/ ®x. Using Lemma C.1.6

(Cauchy-Schwartz), Lemma 4.5.22 (support change lemma) and the bound on €2

oy We

have

1 1 1
3" N < ¢ LS NNl S wewpwisl < VRGP
t t t
Using Lemma 4.5.22 (support change lemma), we have
1
Ig 2 Nww @il < 0% (6)°,

The £, w; in termw can be bounded by ¢ using the approach of Section 4.6.2. Thus,

[termw ||y < (1 4+ 24/p2hTé" + 2R T (1)) (0.03¢A ™) + 4e < 2(¢T)*(0.03¢A7)

w.p. at least 1 — 4 - (2n)exp (L) where

32(bp'rob,te'rmw)2

(27“’)/\/;'7 + vV T'new new)ew
1-0 '

bprob,termw = (¢+)2

For term, we proceed as in Section 4.6.1 with N}, = M; = ®x 17 [(®;)7/(P;) 7] 17’
Thus,

1
prob,teTm2 - ma'X(bprob,teerD bprob,teTmZQ; bprob,te’rm23) S (1 _ b)2 (¢+)2(Cj\/;’7 + V Tnew new)2

b S 0 Q(QTC\/;’)/ + vV Tnew new)2
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Use byrop to denote the upper bound on max(bpreb term2; Oprob.terms). Lhen

bPTOb = (1 _1 b)3 (¢+)2(27"C\/7_“’)/ + V Tnew new)2

Using (4.20), (4.22), (4.21), we get

b (rnewg)2b2 (7”72) < 0'05(Tﬂewg)b2)\_
terml (1 — bz) (1 _ b)2 = (1 _ b2)(1 — b)2

(we can get a tighter bound for the above, but do not need it and hence do not pursue
it) and

to+a—1 t
1
[termfl> <[~ > 17 (Z b%‘”[(<I>t)7;’(<1>t)7;]‘117;'<I>K2T<I>KI7;[(<I>t)7;'(<1>t)7;]*> [

t=to T=to

+ bterml + 4e

w.p. at least 1 —4 - (2n)exp (ﬁ) By Lemma 4.5.22 (support change lemma),
Lemma 4.7.3, and the fact that ||Px Py|le < (F =7 and || Pk Prewll2 < Tnew(,

| fotact ¢ ) ) )
I~ S I [ Do TT(@0)7 ()7 T Iy Bk S kI (807 (B ) 172

t=to T=to

< p*h* (¢+)2 1 —p2 ((r+ TneW)C)Q)‘+

Combining all the bounds from above,

DO o oo

((r+Tnew) ()2>‘+ +

1 TV |
I 2 el < o (61—

w.p. at least 1 — pge With pe := 4+ (2n) exp (32(_1):—:;2) +4-(2n)exp (W)

i Zt Ft = ”é Zt Ek,curEk,cur/q’ketet/‘IjkEk,cur,J_Ek,cur,J_,||2- We
2

proceed as in Section 4.6.1. Here N; = Ej cEgcne O and My = Ui Ey et E cur, 1

Finally consider

Thus, we get
b (TnewC)2b2 (T'YQ) < 0~05(rneW<)b2)\_
terml X (1 . b2) (1 _ b)2 - (1 _ bz)(l _ b)2

(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and

1 1
” Z Ft||2 S 2 max ] ||Ek‘,curEk,curI\IlkET\IJkEk,cur,J_Ek,cur,J_/||2 + bterml + de

0° 7 Jto+a—1
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By Lemma 4.7.3,

(rQ)® 4

“Ek,curEk,cur/‘IlkET‘IIkEk,cur,LEk,cur,L/||2 S (TC)Q/\+ + —/\k+1
1 —(r¢)?

Thus,

+ 4e

1 1 (r¢)? 0.05 (1o O )02 A
"E;Ft”Q S (mw * WA;“) ey

7”72

with probability at least 1 — pj, where pp =4 - (2n) exp <ﬁ), with by = e
'pro

Combining the bounds on the three terms above, we get the final result of the lemma.

[
4.8 Automatically Setting Algorithm Parameters And
Simulation Experiments
4.8.1 Automatically setting algorithm parameters
The algorithm has five parameters. As explained in [64], one can set & = ||®£;_1]|s.

One can either set w, = 7& or one can use the average image pixel intensity to set it.
In [64], they used w = ¢+/||my|[3/n with ¢ = 1 when it was known that ||x;]|2 is of
the same order as ||€||2; and ¢ = 0.25 when ||x;||2 was known to be much smaller (the
case of foreground moving objects whose intensity is very similar to that of background
objects). There is no good heuristic to pick « except that a,qq should be large enough
compared t0 rpew and age should be large enough compared to r. We used o = 100 and
K =12 in our experiments. We need K to be large enough so that the new subspace is
accurately recovered at the end of K projection-PCA iterations. Thus, one way to set K
indirectly is as follows: do projection-PCA for at least K, times, but after that stop
when there is not much difference between Pj,new,kfét and Pj,nekaﬂ’ét [44, 64]. This,
along with imposing an upper bound on K works well in practice [64]. We can set §*

as suggested in [44]; by applying any clustering algorithm from literature, e.g., k-means
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clustering or split-and-merge and then finding the maximum condition number of any
cluster. This can be applied to the empirical covariance matrix used in the clustering

step of cluster-PCA.

4.8.2 Simulated data

Here we used simulated data to compare performance of PCP [32], mod-PCP [86],
GRASTA [80], RSL [79] and Automatic ReProCS-cPCA. We generated data as explained
in Sec. 4.2, with n = 256, J = 3, ry = 40, tiam = 200, tha = 8200. We generated ¢
as in Model 5 and Model 8 with 7jew = 4, 7joa = 4, j = 1,2,3, t; = 700, t5 = 3700,
ts = 6200, ¥ = 3, b = 0.1. The subspace [Py, P, new, Pty news Ptsnew) Was generated by
orthonormalizing an n X (rg + 71 new + 2new + "'3new) Matrix of iid Gaussian entries. The
coefficients a; . := Pj v, were generated as follows. They were divided into three clus-
ters. The coefliceints of the first cluster were iid uniformly distributed over [—100, 100},
those of the second cluster were iid uniform over [—10, 10], and those of the third cluster
were iid uniform over [—1,1]. We generated a;new := Pj e iid uniform over [—1,1]
for the first 1700 time units after the subspace change. After that, it was in one of
the three intervals. The sparse matrix S was generated as in Model 4 with s = 10,
p = 2. The support of z; started from the top, and moved down by 5 indices every
[ = 25 time instants. Once it reached the bottom, it started from the top again. We
set (z4); ~ Unif[Zyin, 3Tmin] for all i € Ty with xp,;, = 20. We ran Automatic ReProCS-
¢PCA with o = 100, K = 12, £ = \/Tnew/2Vmew, W = (Zmin — 14€)/2. We used Py
for modified-PCP as partial knowledge. We solved PCP and modified-PCP every 200
frames by using the observations of the last 200 frames as the matrix M. In Fig. 4.4,
where the averaged sparse part errors over 50 Monte Carlo simulations are shown, we
can see Automatic ReProCS-cPCA outperforms all the other algorithms. We can also
see jumps in the Automatic ReProCS-cPCA error at the time instants at which there is

a subspace change, and then decays exponentially. This is what is seen from the bounds
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Figure 4.4: Average error comparisons for fully simulated data and for the sequence with the
lake background and simulated block object

given in Theorem 4.2.8 and Corollary 4.2.11.

4.8.3 Lake background sequence with simulated foreground

The lake background sequence used is the same as the one used in [64]. The back-
ground consisted of a video of moving lake waters. The foreground is a simulated moving
rectangular object. The sequence is of size 72 x 90 x 1500, and we used the first 1420
frames as training data (after subtracting the empirical mean of the training images).
The rest 80 frames (after subtracting the same mean image) served as the background L
for the test data. For the first frame of test data, we generated a rectangular foreground
support with upper left vertex (20,5 + jo) and lower right vertex (40 + i1, 30+ jo), where
Jo ~ Unif{0, 30] and 4; ~ Unif[0, 5], and the foreground moves to the right 1 column each
time. Then we stacked each image as a long vector ¢; of size 6480 x 1. For each index
i belonging to the support set of foreground x;, we assign (z;); = 185 — (¢;);. We set
M =L+ S. For mod-PCP, ReProCS and GRASTA, we used the approach used in [64]
to estimate the initial background subspace (partial knowledge): do SVD on training
data and keep the left singular vectors corresponding to 95% energy as the matrix Pj.
The averaged normalized mean squared error (NMSE) of the sparse part over 50 Monte
Carlo realizations is shown in Fig. 4.4. As can be seen, in this case, ReProCS performs

the best. In Fig. 4.1, we show the lake with simulated foreground at ¢t = 20, 40, 60, and
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corresponding foreground and background recovered by different algorithms, and we can
see that ReProCS successfully separated foreground and background apart while others

did not.

4.9 Conclusions

In this work, we developed and studied the Automatic ReProCS-cPCA algorithm
for incremental or recursive or dynamic or “online” robust PCA. Our result needed the
following assumptions: accurate initial subspace knowledge and a slow subspace change
change assumption on the £;’s; the basis vectors for its subspaces are dense (non-sparse)
enough; the eigenvalues of the covariance matrix of £;’s are clustered for a certain period
of time (this would happen if data has variations across different scales); the outlier
support sets T; have some changes over time (as quantified in Model 4 or Model 10); the
square of the smallest outlier magnitude is large enough compared to the energy in the
unstructured small noise plus the energy in the changed subspace; and the algorithm
parameters are appropriately set. Ongoing work includes studying the undersampled
measurements’ case, i.e., the case m; = A;x; + B:#; + w;. Besides this, we expect the
cluster-PCA algorithm and the proof techniques developed here to apply to various other

problems involving PCA with data and noise terms being correlated.
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Algorithm 4 Automatic ReProCS-cPCA

Parameters: o, K, &, w, g*, Inputs: m;, Output: x;, &, Py, t;, 7jnewr Gix

: 1 terain / » 4 4
as the ro-th eigenvalue of — > )"7" mymj and Py, . as its top 7o eigen-

Compute A

train

vectors. Set thresh = /\;% Set Py, < Py, Prnew < ], 7 < 0, phase < detect.
For every t > tiain, do

1. Estimate 7, and x;:

(a) compute ®; < I — P, P, ,/ and y, — Pmy
(

() compute T; = {i : |(@pes)il > w)

)
b) solve ming ||x||; s.t. ||y, — |2 < £ and let &, denote its solution
)
(d) LS: compute &; = Li ((®4)4)'y,

2. Estimate €;: £, < m,; — &,

3. Subspace Update:
If ¢t mod « 7£ 0 then ].St’* — ].St_l,*, Pt,new < Pt—l,new; f’t < [Pt,* ]-St,new]

If £ mod a = 0 then
if phase = detect then

A A A

(a) Set u =< and compute D, = (I — Pua,l,*Pua,l,*’)[Z(U_l)aﬂ, ]
(b) Prw < P, Proew & Pioinews Pr < [Prs Proew]
(¢) If Apax(:D,D,’) > thresh then
i. phase <~ pPCA, j« i+ 1, k<0, ;=1
else if phase = pPCA then

~

Set u = £ and compute D, = (I — f’ua_l,*f’ua_l,*’)[@(u,l)aﬂ, o]
Pt,new <+ eigenvectors (i’Du’Du’, thresh), ].f’tﬁ* — ].f’t_L*, P, « [f’t* Pt,new]
k< k+1,set 7jpewr = rank(]_f)nnew)
If Kk == K, then phase <— cPCA, reset k < 0.
else if phase = cPCA then

(a) cluster PCA (summarized in Algorithm 5);

(b) set, Pt,* — lst, ]-St,new — H?

(c) phase < detect, reset k < 0
end-if

eigenvectors(,M, thresh) returns a basis matrix for the span of eigenvectors with eigen-
value above thresh. eigenvectors(M, ,r) returns a basis matrix for the span of the top
r eigenvectors.

Offline RPCA: att = fj + Ka, for all t € [tAj,l + Ka + 1,fj + Kal, compute

~offline

RO e T (D, 1c0)7.) @1 o and £, m, — X, www.manaraa.com
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Algorithm 5 cluster PCA

1. If k == 0, estimate the clusters

~
ux

(a) Set u = % and compute gample = ézt:(u—na 1 2,4, Let \; denote its i-th
largest eigenvalue.

(b) To get the first cluster G;,, we start with the index of the first (largest)
eigenvalue and keep adding indices of the smaller eigenvalues to it until ;\)‘1 >

R R R R i+1
g but % < gt or until Ay < 0.25),;,. Weset G;1 = {1,2,...4}.

train*
For g}g, start with the (i + 1)-th eigenvalue and repeat the above procedure.
Repeat the above for each new cluster and stop when there are no more
eigenvalues larger than 0.25)\

train*

(¢) k< k+1, Pt,* — Pt—l,*, pt,new — Pt—l,new; f)t — [Pt* ]-St,new]
2. If 1 <k <49, estimate the k-th cluster’s subspace by cluster PCA
(a) Set u =L, set Gjo « [].
o let Gjaer = [Gio, Gin,. .. G i) and let O := (I — Gy etk Gder )
(notice that W;; = 7); compute Mpe, = ¥y, (é Z;‘g(ufl)aﬂ Zt@t’) U,
e compute CAT'j,k + eigenvectors(Mepca, , |Q]k|)

(b) k<« k + 17 ]-St,* — ]-St—l,*y ]-St,new — ]-St—l,new: ]-St < []-st,* ]-St,new]

~

3. If k== 10, set Py Gy Gyy)-
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CHAPTER 5. CONCLUSION AND FUTURE WORK

In this work, we studied the sparse recovery problem in the presence of different noise
and obtained results for different cases.

In Chapter 2, we obtained performance guarantees for recursive noisy modified-CS
which has been shown in earlier work to be a practically useful algorithm [14, 99, 29].
We show that, under mild assumptions — a lower bound on either the initial nonzero
magnitude or on the magnitude increase rate, or an upper bound on the maximum
number of nonzero entries with magnitude below a certain threshold; mild RIP conditions
(which imply conditions on the required number of measurements); appropriately set
algorithm parameters; and a special start condition — the support and signal recovery
error of modified-CS and its improvement, modified-CS-add-LS-del can be bounded by
time-invariant and small values.

The special start condition is a possible limitation of our analysis. This can be
removed in various ways. If some prior knowledge about signal support is available, that
can be used at t = 0 as suggested and demonstrated in [14]. Or, one can solve a batch
problem (multiple measurement vector (MMV) problem) for the first set of k frames. If
we let NV = UF_ N, then we have an MMV problem with row support A/ that can be
solved using mixed norm minimization [100], simultaneous-OMP [101, 102], compressive
MUSIC [103], iterative MUSIC [104], block sparsity approaches [105] or M-SBL (Sparse
Bayesian Learning) [106]. In this case one could adopt guarantees for the chosen batch
method for the initialization. In Chapter 2, we used a deterministic set of assumptions

on signal change. Notice however that one can assume any probabilistic model that
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ensures that a;; > amn and 7;, is anything larger than ryin(do) for for the first dy
frames after a new addition; and at later times, r;, can be anything between zero and
infinity. Similarly, any probabilistic model for coefficient decrease that ensures removal
within at most b frames after decrease begins will suffice. We can fix dy to be any integer
between zero and d,,;, and our result will then hold for that particular value of d.

Other ongoing and future work includes designing and analyzing better support pre-
diction techniques rather than just using the previous support estimate as the prediction
for the current support. Some initial ideas are presented in [107].

In Chapter 3, we studied the following problem. Suppose that we have a partial
estimate of the column space of the low rank matrix L. How can we use this informa-
tion to improve the PCP solution? We proposed a simple modification of PCP, called
modified-PCP, that allows us to use this knowledge. We derived its correctness result
that allows us to argue that, when the available subspace knowledge is accurate enough,
modified-PCP requires significantly weaker incoherence assumptions on the low-rank ma-
trix than PCP. We also obtained a useful corollary (Corollary 3.2.1) for the online or
recursive robust PCA problem. Extensive simulation experiments and some experiments
for a real application further illustrate these claims. Ongoing work includes studying the
error stability of modified-PCP for online robust PCA. Future work will include devel-
oping a fast and recursive algorithm for solving modified-PCP and using the resulting
algorithm for various practical applications. Two applications that will be explored are
(a) video layering, e.g. using the BMC dataset of [108], and (b) recommendation system
design in the presence of outliers and missing data. For getting a recursive algorithm,
we will explore the use of ideas similar to those introduced in Feng et al’s recent work
on developing a recursive algorithm that asymptotically approximates the PCP solution
[66].

In Chapter 4, we studied the problem of recursively separate low rank and sparse

component apart in the presence of bounded noise. We develop and study an algorithm
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based on the ReProCS idea introduced and studied in [44, 84, 85]. We call it Automatic
ReProCS with cluster PCA (ReProCS-cPCA). This is a significantly improved ReProCS
algorithm compared to what was studied in previous work. It is able to automatically
detect subspace changes within a short delay; is able to correctly estimate the number of
directions added or deleted; and is also able to correctly estimate the clusters of eigen-
values along the existing directions. The algorithms studied in [44, 84] could not do any
of this. Moreover it is able to accurately estimate both the newly added subspace as well
as the newly deleted subspace. The latter is done by re-estimating the current subspace
using an approach called cluster PCA (cPCA). The basic idea of cPCA was introduced in
[44], but the current work uses that idea to develop an automatic algorithm. The cPCA
step ensures that the estimated subspace dimension does not keep increasing with time.
The algorithms studied in [84, 85] did not do this. Finally, unlike past works, the current
algorithm also returns more accurate offline estimates. We also derive a correctness re-
sult for the proposed algorithm under relatively mild assumptions. (1) First, we obtain
a result for the case where the £,’s can be correlated over time (follow an autoregressive
(AR) model) where as the result of [84, 85] needed mutual independence of the £;’s.
This models mostly static backgrounds in which changes are only due to independent
variations at each time, e.g., light flickers. However, a large class of background image
sequences change due to factors that are correlated over time, e.g., moving waters. This
can be better modeled using an AR model. (2) Second, with one extra assumption —
that the eigenvalues of the covariance matrix of £; are clustered for a period of time after
the previous subspace change has stabilized — we are able to remove another significant

limitation of [84, 85].
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APPENDIX A. PROOF OF THE LEMMAS IN CHAPTER 2

A.0.1 Proof of Lemma 2.2.7

We provide the proof here for the sake of completion and for ease of review. This
will be removed later. In this proof, we use T, A, N instead of T;, A;, N; respectively
for simplicity. Let h := X4 — X. We adapt the approach of [12] to bound the
reconstruction error, ||h|| := ||[Xmoedes — X||. A similar result was obtained in [28]. Let A4
denote the set of indices of h with the |A| largest values outside of T U A, let Ay denote
the indices of the next |A| largest values and so on. Then using the same approach as

that of [12], Le., [ha, |l < a1,

1
eroaoan < Iha, |l < —==Ilheruayl:
j>2 ’ VA

Since Xpodes = X + h is the minimizer of (2.2) and since both x and X;,,04cs are feasible;

(A.1)

and since x is supported on N C T U A,

1%ally = [lx7ells = [[(x + D)7 ][y

> [[xally = [hally + [heruaylh (A.2)

Thus,

Iaeruayelh < Jhalls (A.3)

Al

Combining this with (A.1), and using 18l < ||hal|, we get

<3 b, | < [ha (A.4)

j>2

||h(7'UAUA1)c
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Next, since both x and X,,.4cs are feasible,
[[Ah]] = [|A(x — Xiodes)
<y — Ax|| + |y — AXodes|| < 2€ (A.5)
In this proof, let
0= 07431 (A.6)
Now, we upper bound ||hruaua, |- By dj7j421a] < d, we have
(1 = 9)|hrusua|® < [[Ahrosua, | (A7)

To bound the RHS of the above, notice that Ah;aua, = Ah — 222 Ah,; and so

IAh7uauA, |I* = (Ah7uaua,, Ah) = > (Ahruaua,, Aha,)

Jj=22
Using (A.5) and the definition of dg given in (2.8) and 0|7 494 < 0,
[(Ah7uaua,, Ab)| < 26V1 + 6]lhruaua, || (A.8)

Using the definition of fg, g, given in (2.9); equation (A.4); and the fact that ||hr| +
Ihaoa, || < V2Ihruaua, [l, we get the following. Using 7 ja) < dji41a) < O7isial; O21al |

< O31a] < 74314 [10],

1> (Ahziaua, Ahy))|

j=2
< Orraranialllbroava, 1) [ha,ll
Jj=2
< Ol[hruava, | [hal (A.9)

Combining the last six equations above, using ||ha| < |[h7uaua, ||, we can simplify the

above to get

4149
|h| <2|lhruava, || < €
1—26
44/1
=7 _;_556 (A.10)
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A.0.2 Proof of Theorem 2.3.2

We prove the first two claims by induction. Using condition 4 of the theorem, the
claim holds for ¢ = 0. This proves the base case. For the induction step, assume that
the claims hold at ¢t — 1, i.e. \Ae,t,ﬂ =0, |7~Z,1| < S, and ]At,1| < Says0 [Tyl < S. At
t, there are at most S, new support, so |A;| < |At_1| + 5, < 285,; there are at most S,
removed support at time ¢, so |A. | < |At_1| + S, = S,. Thus the second claim holds.

Next we bound |A|, |A.,|, |T;|. Consider the support estimation step. Since condi-
tion 1 of the theorem holds, we can apply Lemma 2.2.7 with S7; = S, Sa, = 25,. This
gives ||X¢ — Xt.modes|| < 7.5e. Using Proposition 2.3.1, this, along with conditions 2 and
3 implies that all elements of N; \ B; will get detected and all zero elements will get
deleted, i.e., there will be no false detections. Thus, |A| < |B,| < S, and |A,;| = 0 and
so |Ti| < [Nyl 4 |Acs] < S. Thus the first claim holds.

The third claim follows using the second claim and Lemma 2.2.7.

A.0.3 Proof of Theorem 2.3.3

We prove the first three claims of the theorem by induction. Using condition 4 of
the theorem, the claim holds for ¢ = 0. This proves the base case. For the induction
step, assume that the claim holds at t — 1, i.e. \A&t,l] =0, |[Ti—1] < S, and |At,1\ < S,.
Using this, we prove the first three claims holds at ¢.

The bounding of |T¢|, |A¢|, |Acy| is exactly as in the proof of Theorem 2.3.2.

Consider the detection step. There are at most f false detects (from condition 1a)
and thus |Aaqae| < [Acyl + f < Sa+ f. Thus |[Toaael < NG|+ [Acaaasl <5+ 5.+ f.
So the third claim holds.

Next, consider [Auqay|. Applying Lemma 2.2.7 with condition 2, i.e., §7;43a,] <
ds+65, < 0.207, we have ||Xt — Xt modes|| < 7.50e. Thus, all elements of {7 : |(x¢);| > ctaga +
7.50¢} will definitely get detected at time ¢ and so Agaar € {7 1 |(X¢)i| < Vaaa + 7-50€}.

Since condition 3 holds, {7 : |(x¢)i| < taga + 7.50¢} C By, and s0 [Apqa| < |Bi] < S,.
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Consider the deletion step. As Auaar € By, and |(x¢);] < qaga + 7.50¢ for i € Ayaaz,
we have ||(x¢)a,qq. |l < V/Sa(@ada + 7.50¢). Applying Lemma 2.2.9 with condition 2, i.e.,
O Taa.s+1Anaas] = 05425045 < 0.207, we have || (X¢ — X add) Toa, || < 1.12640.261/S,(vaqa +
7.50¢). Thus, using these facts and condition 1b, all elements of A&add,t will get deleted
and elements of {i : |(x;);| > 2aga} will not be deleted. Thus |A.,| = 0, and since
condition 3 holds, A, C {i : [(x,)i| < 2aa} C By, ie., |Ay] < S,. Thus |T;| < [N +
|Ae7t\ < S. So the first claim holds.

The fourth claim follows using the previous claims and Lemma 2.2.7. The fifth claim

follows using previous claims, Lemma 2.2.9.

A.0.4 Proof of Theorem 2.4.3

We prove the first claim by induction. Using condition 4 of the theorem, the claim
holds for ¢ = 0. This proves the base case. For the induction step, assume that the
claim holds at ¢t — 1, i.e. |Ae,t—1| =0, |7~;_1| < S, and A,; C Si-1(dp) so that |At_1| <
2(dy — 1)S,. Using this we prove that the claim holds at ¢. In the proof, we use the
following facts often: (a) R, C N;—; and A, C N7 4, (b) Ny =N,_1 U A\ Ry, and (c) if
two sets B, C' are disjoint, then, DUC\ B := (DUC)\ B = (DN B°)UJC for any set D.

We first bound |T;|, |Acy|, |A¢]. Since T; = T = M_l, so |Ty] < S. Also, A,y =
N \N: = Nog N[NE L NA)URY € Aeyog URy = Ry The last equality follows
since \Ae,t,ﬂ = 0. Thus |Act| < |Ry| = S

Consider |A;|. Notice that Ay = N \ Nj_1 = (Vg NNE L NRE U (A, NNE,) =
(Aoy NRE U (A, NNE) C (Si-1(do) NRE) U A, = S,-1(do) U A, \ R,. Here we used
A, C Si—1(dp). When dy > 2, Ry C S;_1(dp) and A; is disjoint with S;_1(dp). Thus
1A <|Si-1(do)| + | Al — [Re| = 2(do — 1)S, + Sy — S, When dy = 1,8,-1(dg) = 0, and
A, is disjoint with R;. Thus |A;| < |A; \ Re| = | Ai| = Sa- Thus, |Ay] < k1S,.

Next we bound \At|, |Ae,t|7 |7~§| Consider the support estimation step. Apply the

first claim of Lemma 2.4.2 with Sy = S, Sae = Sa, Sa = k1S., and by = dyr. Since
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conditions 2 and 3 of the theorem hold, all elements of N; with magnitude equal to or
greater than dor will get detected. Thus, A, C Si(do). Apply the second claim of the
lemma. Since conditions 2 and 1 hold, all zero elements will get deleted and there will
be no false detections, i.e. |A.;| = 0. Finally, |T;| < |N;| +|Acy < S +0.

The second claim for time t follows using the first claim for time ¢ — 1 and the
arguments from the paras above. The third claim follows using the second claim and

Lemma 2.2.7.

A.0.5 Proof of Theorem 2.4.8

We prove the first claim of the theorem by induction. Using condition 4 of the
theorem, the claim holds for ¢ = 0. This proves the base case. For the induction step,
assume that the claim holds at ¢ — 1, i.e. |Ae7t,1] =0, |T—1] < 5, and A, C Si—1(do)
so that [Ay_1| < 2(dy —1)S,. Using this, we prove that the claim holds at ¢. We will use
the following facts often: (a) Ry C N;_1, (b) Ay CNE 4, (¢) Ny = Nio1 U Ay \ Ry, and
(d) if two sets B, C' are disjoint, then, DUC\ B := (DUC)\ B = (DN B°)UC for any
set D.

The bounding of |T;|, |A¢|, |Acy| is exactly as in the proof of Theorem 2.4.3. Since
Ti = Tio1,50 | Ty) < S. Also, Apy = Nioy \W; = i N[N NASUR] € Ay UR, =
Ry Thus |Ag| < |Ry| = S,. Finally, A, = N \ Ni—1 = (A1 NRE U (A, NNE,) C
(Si—1(do) NRE) U A;. Thus,

Ay C Siy(do) U A\ Ry (A.11)

When dy > 2,R; C S;_1(do) and A, is disjoint with S;_1(dp), so |A¢ < [Si—1(do)| +
| A — |Ri| = 2(do — 1)Sy + Sy — Sa. When dy = 1,8;_1(dy) = 0, and A; is disjoint with
Ry, so |Ay] < | A\ Re| = | Ai| = Sa- Thus, |Ay] < k1S,.

Consider the detection step. There are at most f false detects (from condition 1a)

and thus |Aaqas] < A + f < Sa+ f. Thus [Toaas| < [N + [Acadas] < S+ Sa+ f.
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Next, consider |Auqq¢|. Notice that

A CSioq(d) U A\ Ry

C Sy(do) UZy(do) \ Di(do — 1). (A.12)

The first C is from (A.11), the second one follows by using (2.11) for j = dy. Now,
apply Lemma 2.4.6 with Sy, = S, Sa., = Sa;, Sa, = k15,4, and with b; = dyr. Using
(A12), {i € Ay : |(x)i] = W} = A, N Z(dy). Since conditions 2 and 3 hold, by
Lemma 2.4.6, all elements of {i € A; : |[(x;);] > b1} will definitely get detected at
time . Thus Auaar € A\ {7 € Ay [(x0)i] = b} € Ay \ Zi(dp). But from (A.12),
Ay \ Zi(dy) C Si(dp) \ Di(dy — 1). Since when dy > 2, Dy(dyg — 1) € S(dp), then
|Auda] < |Si(do)| = |Die(do—1)| = 2(dy—1)S, — Sq; when dy = 1, Dy(dy —1) = S;(do) = 0,
then [Auqa:| = 0. Thus, |Auaat| < ka2S,

Consider the deletion step. Apply Lemma 2.4.7 with S7..,, = S, Sa,., = K15
Since condition 2b holds, dgi+g,+¢ < 1/2 holds. Since Ajqa:r C Si(do) \ Di(do — 1),
Aagar contains only 25, elements of magnitude {r,2r,--- ,(dy — 2)r} and S, elements

of magnitude (dy — 1)r. Thus, ||(x;) | < k3y/Syr. Using these facts and condition

Audac]
1b, by Lemma 2.4.7, all elements of Aaadd,t will get deleted. Thus |Ae,t| = 0. Thus
I7e] < M|+ [Acy] < 5.

To bound |A|, apply Lemma 2.4.7 with SToaae = S+ Sa+f, Sawa, = k2Sa, by = dor.
By Lemma 2.4.7, to ensure that all elements of {i € Toaa+ : |(x¢):] > b1} do not get falsely
deleted, we need dg,+5,+f < 1/2 and dor > adel—i-\f—g—a(\/§6+2950+ga+f7k23ak3\/5_a7"). From
condition 1b, agq = \/SZGQLG + 2k305.45,+f.ks5,Cr. Thus, we need dg,+5,+7 < 1/2 and
dor > 2(\/5%@5 + 2k30548u4 £k28.CLT)- OSp+8.+f < 1/2 holds since condition 2b holds.
The second one holds since condition 2¢ and r > G4 of condition 3 hold. Thus, we can
ensure that all elements of {i € Taaas : |(x¢)i] > b1}, i.e. all elements of Toqq; with

magnitude greater than or equal to by = dyr do not get falsely deleted. But nothing can

be said about the elements smaller than dyr (in the worst case all of them may get falsely
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deleted). Thus, A, C Sy(dy) and so |A;| < 2(dy — 1)S,. This finishes the proof of the
first claim. To prove the second and third claims for any ¢ > 0: use the first claim for
t — 1 and the arguments from the paragraphs above to show that the second and third
claim hold for . The fourth claim follows using the previous claims and Lemma 2.2.7.

The fifth claim follows using previous claims, Lemma 2.2.9 and a bound on |[|(x;)g,|2-

It is easy to see that ||(x¢)z,|l2 < ksv/Sar.

A.0.6 Proof of Theorem 2.5.5

Recall from the signal model that |[A;| < S for all ¢, and that |SD;| < (bJQF—l)Sd. Also
N, = Uﬁ:t_dmm 1A UL, USDy, noting that the first two sets might not be disjoint.

The proof follows using induction. The base case is easy. Assume that the result holds
at t—1. At t, at most S, new elements get added to the support, thus |A;] < \At,ll—i-Sa <
@Sd + dpS, + S,. Also, since T, = T,_1, thus I7:| < S. And A,; = Aei_l U Ry,
indicating |A. | < |Ae7t_1] + |Ry| < S,. The second condition of the theorem ensures
that 6734, < (V2 — 1)/2. Thus using Lemma 2.2.7, ||x; — X¢|| < 7.50€.

Consider the support detection step. Consider an ¢ ¢ N, ie. (x;); = 0. Since
a = CM = 1.50€ > CM ||Xt Xt|| > ||%¢ — Xe||oo > |(X¢):i], thus @ will never get detected into
the support estimate. Thus, |Ag,| = 0. Thus |T;| < |N| + |Ac,| < S.

The third condition ensures that any newly added element exceeds a+-27.50€ within

VSa
dy time units and any element of £; exceeds a + 5%7 50e as £ > a+ %7 50e. Consider

any such element j. This means that |(X;);| > [(x:) ;] —|(x:—%¢) ;| > [(x¢) ;] =%t =%t || o0 >
|(x¢) ] — CM S |lxe = % | > [(x0)] — CM SA-7.50€ > a. Thus such an element will definitely get
detected into the support. This means that the only nonzero elements that are missed are
either those that got added in the last dy frames or those that are currently decreasing.
The maximum number of elements that got added in the last dy time units is dyS,. The
maximum number of decreasing elements at ¢ is less than or equal to @Sd. Thus,

IA,] < (1;45_1)5(1 + doS,. This proves the induction step and hence of the theorem.
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A.0.7 Proof of Theorem 2.5.9

Proposition A.0.1 (simple facts). Consider Algorithm 2.
1. Ani € N; will definitely get detected if |(x4)i] > Qaga + 5—1‘;7||xt — Xt modes|| -
2. An i € N; will definitely not be deleted if |(xy);] > ager + j—g—aHXt — Xt.qdd]|-

3. Alli € Aot (the zero elements of T;) will definitely get deleted if cvger > || —Xt addl| oo

Recall from the signal model that N = UL_,_, | A, UL, USDy, noting that the

first two sets might not be disjoint. By the induction assumption, |7;_;| < S. Since

To = Tier = Ny, thus,
il < S (A.13)
Also, by the induction assumption,
A1 CSD UA ... Ag, (A.14)

Recall that ./\/;5 = M—l U At \ Rt. AlSO, SDt_l Q SDt U Rt. ThHS, SDt_l N Rg Q SDt

Thus,
Ap =N NNE =Nt NRY NN ) U (A NNF)
C (A1 NRE) U A,
CSDLUA - UA 4 UA (A.15)
Thus,
(b+1)
|At| S 9 Sa + dOSa + Sa, (A16)

Using the above bounds on |7;| and |A;| and the RIP condition of the theorem, we

can apply Lemma 2.2.7 to show that

“Xt — fct,modcs” S 7.50€ (A].?)
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Thus, using the Proposition A.0.1 and condition 3, all elements of A;_,4, are definitely

detected in the add step at ¢, i.e.
A gy C A, (A.18)

Also since /¢ satisfies condition 3, all elements of £; will be detected in the add step at t.

Using (A.18),

Agadr = A\ A, =8D,U A, U Aioq--UAi—g \ A,

CSDUAUA - UAdpt1 (A.19)
Thus,
Dugar] < & 5 Vs, + dos, (A.20)
Also, Tagar € Ny U A, pgas and
Agaddt = D U (At \M) C Ae,t—l UR;U (At \ M) (A.21)
Thus, |A¢adat] < Se+ f and so
[Tadar] < S+ [Acadar] < S+ Sa+ f (A.22)

By Lemma 2.2.9 and condition 2c of the Theorem, we have

”(Xt - )A(t,add)H < 1.12e + (1 + 1'2619|7;dd,t|7|Aadd,t|)”(Xt)Aadd,t”

< 1.12¢ + 1.261])(x,)a (A.23)

add,t ||

Recall that, by Proposition A.0.1, any element of xa,,,, will have magnitude smaller

than auqq + %7.506. By (A.20), we have

||XAadd,t || S \/|Aadd$t

(Qaqd + C—M7.50€)

Nih
< \/ (st o) o + j—MS_me) (A.24)
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Let h = \/(@ + do)(taaa + \3—]\5{—7.506). Combining this with the bound on |T,q4.| and

|Aada,| we can bound the LS step error by a time-invariant quantity,
(% = Kinaa) T, || < 1.12¢ + 1.26101/5, (A.25)

Using Assumption 2.4.5, we have,

11 — Xt dd) T floo < 1.12 \fg_e +0.261C,h (A.26)

Using the fact that aqe is equal to the RHS of the above equation and proposition fact
3, if (x;); = 0, then j € R,. Thus,

NP SR, (A.27)

Next, using (2.18), (A.26), fact 2 of Proposition A.0.1 and the value of age, we can
conclude the following: if j € L£;,j will not get falsely deleted; the same is true if

je A, v <t—dy Thus,
Ry CNFUSD,UAUA 1 UA g1 (A.28)
Recall that N; = N;_; U A, \ Ry. Thus

Ay =N \N; = (N, NNE N AU (N, NRy)

CANA)U(SDL,UAUA ... Ar_gyir) (A.29)

Since A;_g, C Ay, using (A.15), we get

ANASCSEDUAUA - UAgn (A.30)
Thus, using (A.29),
Ay CSDUAUA - UAr_gyi1 (A.31)
Thus,
A< J; s, + dos, (A.32)
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Now consider A, ;.

Ae,t =-/\A/;‘/ \-/\[t

= (Nima NRE NG U (A DRy NAY)
As Nf C Ry, we have RS C N,. Thus,
Aoy =10 (A.33)
Thus,

|Ae,t

=0 (A.34)
Since |N;| < S and since |T;] < |N;| + |Aeyl, thus
Tl < S (A.35)

By condition 2,

0|ﬁ|7|At| S Hsv%sa‘i‘dosa‘i‘sa

= 5S+3(b;—15a+dosa+sa) < 0.207 (A.36)

and

(5|7”;| S (55’ S (55+,5’a+f S 0207

Using the same way as getting ||(x; — X¢aa4)||, we have
(% — %¢)[] < 1.12¢ + 1.261]|x3, ||

Also, using Proposition A.0.1, any element of x5, will have magnitude smaller than

ga + 1.1255¢. By (A.32), we have

9’
VSa

b+1
1%, 4,1l < \/(( )Sa+dosa)(ade1+ 1.12—L¢)

2

proved.
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A.0.8 Proof of Remark 2.3.4: necessary and sufficient conditions

Necessity: Consider the noise-free case, i.e. € = 0 and Algorithm 1. We claim that
0548, 1eft < 1 at all times ¢ > 0 is necessary to ensure exact recovery of all sparse signal
sequences with support size at most S, and number of support additions and removals
at most S,. We prove this here. Assume exact recovery at t — 1. Assume also that the
support size at t — 1 is .S, there are S, new additions and S, new removals at time ¢.
Thus support size at time ¢ is also S.

Suppose that dgyg, et < 1 does not hold. This means there is a set, R, of size S+ .5,
for which rank((A;)g) < S+S,. Pick a z so that zg € null((A;)g) (i.e. (A;)rzr = 0) and
zge = 0. Partition R into three sets R = D U Dy U Dy s.t. all are disjoint; |D| =S — S,

1 and 2? supported

|Dy| = So = |Ds| and ||zp,|l1 < ||zp,|[1- Create two sparse vectors x
on DU Dy and D U D, respectively as follows. Let (z')p = zp/2, (z')p, = 2p,,
(") (pupyye = 0. Let (2%)p = —2p/2, (2*)p, = —2Dp,, (¥*)(pupy)e = 0. Then both z' and
22 have support size S.

Suppose that the signal at time ¢ is 2!, i.e. x; = 2! so that y, = A,z', and suppose
that the support (equal to support estimate) from t—11is T = DUA, where A, is a subset
of (DUD1UDy)¢ of size S,. Consider the solution of modified-CS with e = 0. In this case,
both 2! and x? are feasible since A;(z' —2?) = (Ay)pzp/2+ (Ay)p,2p, — (At)p(—2p/2) —

(A)p,(=2p,) = (A)rzr. But, [[(z")pell = (@), b = llzpi [l = llzp,ll = [I(2*)pe

1.
Thus, clearly 2! will not be the unique solution to modified-CS with € = 0. This proves
that dgis, left < 1 is necessary.

Sufficiency: Assume exact recovery at t — 1, i.e., T, = T_1 = Ni_1, A, = N, \T; =
N\ Nioq, ie, [Ti] <8, |A] < S, thus by Lemma 2.2.7 and dgy35, < 0.5, we have

[x: — %] <0, ie., X = x4
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A.0.9 Generative model for Signal Model 2:

This model requires that when a new element j gets added to the support, its mag-
nitude keeps increasing at rate r;; until it reaches large set, and that an element ¢ of the
large set starts to decrease at rate r;, until it reaches 0. The sign is selected as +1 or -1
with equal probability when the element gets added to the support, but remains the same
after that. We can choose values for amin, dmin, "min (dmin ); Sa, M, b during simulation.

Mathematically, it can be described as follows. Let (x;); = (M;);(s;); where (M),
denotes the magnitude and (s;); denotes the sign of (x;); at time t. x; is a m x 1 vector;
So = [1115], here i, is a random number between 0.9 and 1.

For 1 <t <b,let Spy =0, 5., =0, S5 =095, For any ¢ > b, do the following.
1. Generate

(a) the new addition set, A;, of size S,; = [ (X8 Sar — X S,7)] (here pg is a

random number between 0.9 and 1) uniformly at random from N; ¢,

(b) the new decreasing set, By, of size Sq: = [u35,] (here ps is a random number

between 0.5 and 1) uniformly at random from £, ;, and

(c) the new deleted set, Ry, of size S, = [114|SD;—1|] (here py is a random number

between 0.1 and 0.3), as the smallest S, elements of SD,_;.

2. Update the coefficients’ magnitudes as follows.

(My); =

(My—1)i +1ip, 1€ Ay

min

)i ULy \ By, 7jp = s
(My_1)i+rig, 1 €U,y 1 Ar it = 1167 min(dimin);
(My—1)i =73y, 1 € SDyy \ Ry, rip = M7£;

(Mi—1)i

0, i € NY.

i —Tigy © € Byrig = pus(M—q — £);
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where ug, p7 and pg are random numbers between 1 and 1.44; ps is a random

number larger than —((M;—1); — {).

3. Update the signs as follows.

(5i-1)i, 1 €N\ A
(s0)i =1 did(£1), i € A, (A.37)
0, i€ Nf
where 7id(+1) refers to generating the sign as +1 or -1 with equal probability and

doing this independently for each element i.

4. Set (x¢); = (My);(s¢); for all i.

5. Update

Li=Aia,,, UL\ B,

min

SDt ZSDt_l U Bt \ Rt.
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APPENDIX B. PROOF OF THE LEMMAS IN CHAPTER 3

B.0.10 Derivation for (1.5)

Recall from Sec 1.1.2 that rpe, = rank(Lyey),

Loew = (I — GG*)L *Y Uppoy Znew V7

new

(B.1)

Let Uy be a basis matrix for range(L) N range(G) = range(U) N range(G) with 7y =
rank(Ug) Thus, there exist rotation matrices Ry, Rg and basis matrices Uy, Gexra Such
that

UR1 = [UO Ul] and GRG’ - [UO Gextra] (BQ)
with Gexira* U1 = 0.

Clearly, rank(U;) = rpe,, . Split the r X r matrix Ry as Ry = [(R1)o, (Ri1)1] so that

(R1)o contains the first 7o columns and (R;); contains the last 7,6, columns. Thus,

Lnew = (I - UOUS)[UO Ul]RTEV* = U1 (Rl)TEV*

Let (Ry)rSV*) X U,2, V3 denote its full SVD. Thus Lyey = U; U3, V. Comparing

with the SVD of L., we get that U, = U; Uy where Us is a 76y X Thew Unitary matrix;
Yhew = 29 and Vyew = Va. Thus,

I 0
URl = [UO UneWU;] = [UO Unew] (O U*> (BB)
2

IThis follows because (I — GG*)L = (I — UyU)[Uy U;JR;'EV* = [0 U;JR{ZV*. Since
rank([0 Uy]) = rank(U;) and all other matrices are full rank r, we get that rank(U;) = rank(Lpew) =
Tnew- Here we have used Sylvester’s inequality on Ly, = [0 Up](RTEV*) to get that rank(U)+r—r <
rank(Lnpew) = Tnew < min(rank(Uy),r) = rank(Uy).
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-1
By taking Ry = Ry (3 0) =R, (I 0), we get

U3 0 U
URU = [UO Unew] and GRG = [UO Gextra] (B4)

Rearranging, we get (1.5).

B.0.11 Proof of Lemma 3.3.1

First we state and prove the following fact?.

Proposition B.0.2. Assume mq, < mo < ning, we have
P Uniftm) (Success) > P i, (Success).
There are a total of ("1"2) size-moy subsets of the set of indices of an n; X ny matrix.

m2

The probability of any one of them getting selected is 1/(""*) under the Unif(m,) model.

m2

Suppose that the algorithm succeeds for k out of these (”7},:;2) sets. Call these the “good”

sets. Then,
k

()
m2

By Theorem 2.2 of [32], the algorithm definitely also succeeds for all size-m; subsets

PUnif(ms) (Success) =

of these k£ “good” size-mqy sets. Let k; be the number of such size m; subsets. Under

nin2
m1

the Unif(m;) model, the probability of any one such set getting selected is ( L ) Thus

PUni(m, ) (Success) = (If—lz)
my

Now we need to lower bound k;. There are a total of (";122) size-mo sets and each of

them has (Zf) subsets of size m;. However, the total number of distinct size-m; sets is

only ("1”2). Because of symmetry, this means that in the collection of all size-m; subsets
mi

ning ma
of all size-ms sets, a given set is repeated b = % times.

my

In the sub-collection of size-m; subsets of the k£ “good” size-msy sets, the number

of times a set is repeated is less than or equal to b. Also, the number of entries in

2This fact may seem intuitively obvious, however we cannot find a simpler proof for it than the one
we give.
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this collection (including repeated ones) is k(ﬁ'j) Thus, the number of distinct size-m;

k()

subsets of the “good” sets is lower bounded by k(?), ie. ky > —3. Thus,
F () (o)
(o) Gat) (o)

Proof of Lemma 3.3.1. Denote by )y the support set. We have

PUnitm,) (Success) > = Punif(ms) (Success).

PBer(po) (Success)

ning

=" Pher(p) (Success | [Qo| = k) Pper(py) (|| = )
k=0
mo—1

S Z IEDBelr(p())(lS)O' = k)_l_

k=0
ning

Z Punit(r) (Success) Prer(py) (|Q20] = k)

k=mg

<PBer(po) (|Q20] < m0) + Punit(mg) (Success),

where we have used the fact that for & > mg, Punigr)(Success) < Punigm)(Success) by
Proposition B.0.2, and that the conditional distribution of €y given its cardinality is

uniform. Thus,
PUnit(mo) (Success) > Pper(pg) (Success) — Prer(pg) (|20] < mo).

Let random matrix X" %™ be a matrix whose each entry is i.i.d. Bernoulli distributed as
P(X;; = 1) = po, P(X;; = 0) = 1—po. Then, under the Bernoulli model, [$2o| = >_, ; X;,
E[> ;. ; Xijl = E[|Q0]] = poring, and 0 < X;; < 1. Thus by the Hoeffding inequality, we

have
PEY X~ 3K, > 1) < exp(— 2
i,3 ! 1,3 v - ity |
As pg = & + ¢, take t = egning, we have

ninz

PBer(po)(|QO| S mo) = P(Z Xij S mo) S eXp(—QEg’I’Ll’I’Lg).

4]

Thus Pugiggme) (Success) > Ppey(yy) (Success) — exp(—2€3nins). O
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B.0.12 Proof of Lemma 3.3.2

Proof. First, we state the theorem used in this proof.

Lemma B.0.3. [67, Theorem 2(10a)] For n x n matriz A with entries a;;, let a;;,1 > j
be independent (not necessarily identically distributed) random variables bounded with a
common bound K. Assume that fori > j, the a;; have a common expectation =0 and
variance o*. Define a;; fori < j by a;; = aj;. (The numbers K, p, o* will be kept fized as
the matriz dimension n will tend to infinity.) For k satisfying K?k®/(40°n) < 1/2, we
have

kv

IP(m?X(|)\Z~(A)|) > 20v/n +v) < nexp(—m).

Note that in this theorem, variance is fixed to o2, but we have checked that the
theorem holds for variance bounded by o2, and actually [109, Theorem 4], [110, Theorem
1.4] used or stated similar results.

Let

0E
A = (B.5)
E*0
Notice that A is an (n; + ng) X (n; + ne) symmetric matrix that satisfies requirements

of Lemma B.0.3. By Lemma B.0.3 with K = 1,u = 0,0 = /p, and setting v =

(0.3536 — 2,/ps)\/n1 + na, and k = p§/3(n1 4+ n2)"/%, we have

P(max |A\;(A)| > 0.3536y/n1 + nga)

p§/3(n1 + n2)1/6 . (03536 — 2\/;75)\/711 + no

<v/ny + nyexp(— 0.3536v/n; + ny

)

S(?’Ll + nz)_lo < n(_SO

In the above, v > 0 because ps < 0.03 and the second inequality holds because %
10.5
prCTEEry—t Clearly,
EE* 0
Al = VIAA*] = = VI|[EE*[| = [[E] (B.6)
0 E‘E
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Therefore, we have P(||E| > 0.5,/n)) < n(’ﬁo. O

B.0.13 Implications of Assumption 3.1.2

We summarize here some important implications of Assumption 3.1.2.

Remark B.0.4. By Assumption 3.1.2(a)(b)(c), we have

ps < 1—1.5max {60p}/2 11Cy p?, 0.11}

1/2 111
<1 15max {60p}/%, 11Co; )%, 228 202
1.510gn(1)
log“n
1. E)InaX{GOpT/2 116’01p1/2 1157(1)
<|1- @) (B.7)

1.5logn (1)

2 1110g n(1) lg[logn(lﬂ

maX{GOpT/ 11001p1/ o)

<|1-

logn(y)

The third inequality holds because 0 < 1.5 max {GOpi/Z, 0.11} < 1.5max {60/10%,0.11} <
1; and for fived constant b > 1, (1 —x/b)’ > 1 — 1z whenever x < 1. The fourth inequality
holds since 1.5logny > 1.3[lognay| for nay > 1024.

Remark B.0.5. By Assumption 3.1.2(b)(c), we have

ps < 0.0156 < 1 — 220C1ee (B.8)

logngy °

This follows sinceny > exp(253.9618C; p,) gives 250073(1pr < 0.9844, and so 1— 2150(25073(11,? >

0.0156.

B.0.14 Proof of Lemma 3.3.8

The proof uses the following three lemmas.

Lemma B.0.6. [63, Theorem 4.1][32, Theorem 2.6] Suppose Qo ~ Ber(py). Then there
1s a numerical constant Cyy such that for all > 1,
IPr — po ' PrPo,Prl| < €o, (B.9)

Bpr

— 3n(_1f provided that py > Coy 652 Togn) -
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Lemma B.0.7. [32, Lemma 3.1] Suppose Z € 11 is a fixzed matriz, and 2y ~ Ber(py).
Then
12 = po "PrPoy 2l < €0l 2]l (B.10)

with probability at least 1 — 2n(’1§1, provided that py > 60 ¢, @%.

This is the same as Lemma 3.1 in [32] except that we derive an explicit expression

for the lower bound on py. A proof for this can be found in the Appendix of [69].

Lemma B.0.8. [63, Theorem 6.5][32, Lemma 3.2] Suppose Z is fized, and Qy ~ Ber(py).

Then there is a constant Cyz > 0 s.t.

ng 1
I— g Py V2| < Coay | — D08y 7y B.11
pO 0 00

with probability at least 1 — n(_ﬁl, provided that py > %;(1).
In the following proof, we take
1
e=(p) "/ and g=1—p, " ="V (B.12)

Notice from our assumption on p, given in Assumption 3.1.2 that
€< (107HY4 <l
Let Z; = UpewView — PnY;. Clearly, Z; € II. Notice that Y; € QF,

Yj = Yj—l + q_l]P)Qij_l, and

Zj = (]P)H — q_lpnpﬁjPH)Zj_l.

Clearly, ; and Z;_; are independent. Using (B.7) and (B.12), ¢ > 00vior Thus, by

logn(1)

Lemma B.0.7
1Zillo0 < € | Unew Ve lloos (B.13)

w.p. at least 1 —2jn(_1§1. By Lemma B.0.6 and (B.7), with probability at least 1 —3jn(_1§1,

1Zllr < el Zi-1llp < € [Unew Viewllr = € V7. (B.14)
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Proof. As
Jo
=> ¢ 'Pqy, 2, (B.15)
j=1
and P Z; = 0, so we have, with probability at least 1 — 3j0n(_1;1,

Jo
W =P Yl <> g7 PuaPg, 25|

j=1

—Z IPre (g Zj1—Zi4)|
SZ lg™ Po, 251 — Zj-4]|
=1

11ng1
<Cos — R Z” 1l

11log n) by (B.7))

(using Lemma B.0.8 and ¢ >
n(2)

11ng1
<Cos e ZGJ 1 Unew View llos

60,2
(using Lemma B.0.7 and ¢ > Pr by (B.7))
og n(l)
. [1Ingylogn
<Cos(1 = )| =0 U Vi [
11p,
<Cs(1 — €)™ _ P
qlog n(l)
: * pT
(using || Unew Viewlloo < m by (3.3))
V1 C03P1/4
_v 0(1—e)
60+/pr
(using g > 00vpr by (B.7) and e < e ')
log n)
1
<
—16

(using p, < 7.2483 x 107°Cp3* by Assu. 3.1.2(a))

The fourth step holds with probability at least 1 — jon(_Sl by applying Lemma B.0.8 j
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times; the fifth holds with probability at least 1 — 2 jon(’ﬁl by applying Lemma B.0.7 j
times for each Z; (similar to (B.13)). Since jo = 1.3logn) < ngy (for ng satisfying

Assumption 3.1.2), the result follows.

U
Proof of (b)
Proof. Since PqYj, = 0, we have
Po(Unew Viaew + Pt Y,) = Po(Unew View — PriY ) = Pa(Z5),
and by (B.14), (B.12) and (B.7) (¢ > 1}5;—;:{?7), we have
Ba(Z)llr < 123l < €0 VF < et 908m0 /5 = VT (B.10)

(1)

with probability at least 1 — 3j0n(_1;1. Thus, when 7‘/7; < %, e.g. nq) = 102, Lemma
(1)

3.3.8(b) holds with probability at least 1 — 3n(_1§0 O

Proof of (c)

Proof. Recall that Upey Vi, + W= Z, +Y;,, P Y;, =Y;,. From above,

new

<

0| >

(B.17)

3

Hg
Jﬁ

1Z50llos < 1 Z5llF <
a

by (B.16) with probability at least (1 — 3n;)’) when i < 1 eg ng > 1024. Thus,

~

we only need to show [[Y}[lec < 2. We have, with probablhty at least 1 — 2jon )

Y jolloo < a7 3202 1Pa, 251 1o
<q! JO =1 ||ZJ 1o
<q 0 T [ Unew Viewlloo
(using Lemma B.0.7 and ¢ > 60p,/* by (B.7))

log n(1)

~1yvo  _j-1 p (B.18)
S q ijl 6] n(l) log2 n(l)

(using “UnewV*eWHoo < /m by (33))

A 11\
< 60(1—e-1) < %0

SVPr 1y (B.7) and € < e~ by (B.12))

log n(1)
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The third step follows from Lemma B.0.7 with probability at least 1 — 2j0n(’1§1‘ Thus,

Lemma 3.3.8(c) holds with probability at least 1 — Zn(_lﬁo.

To sum up, with the assumptions in Lemma 3.3.8, we have (a), (b), (¢) of Lemma

3.3.8 hold with probability at least 1 — 11n(_1%0. O

B.0.15 Proof of Lemma 3.3.9
The proof uses the following lemma.

Lemma B.0.9. [32, Corollary 2.7] Assume that Qg ~ Ber(po), L satisfies (3.1), (3.2)

and (3.3), then there is a numerical constant Coy such that for all > 1,

Py Prll* < po + €o,

with probability at least 1 — 3n(_1€ provided that 1 — py > Coy €5° logﬂ';r(l).

This is a direct corollary of Lemma B.0.6 stated earlier. It follows by replacing €2 by
2§ in Lemma B.0.6.

Proof of (a)

Let E := sgn(S). Recall from the assumption in this lemma that E satisfies the
assumptions of Lemma 3.3.2.

By taking Q¢ = Q, po = ps, €0 = 0.2, and 5 = 10 in Lemma B.0.9, and using (B.8),

we get
PP ||* < 0 = p, + 0.2, (B.19)

with probability at least 1 — 3n(_1§0. Thus, using the bound on pg from (B.8), we get that
|PoPr||* < 0.22 < 1/4.

Proof of (b)
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Proof. Note that
W =PuAE + Pro) Y (PoPPo)"E
k>1

=P W5 + P WY

By Assumption 3.1.2(b)(e) and Lemma 3.3.2, we have

Bl <0.5\/nq)

with probability at least 1 — n(_ﬁo. Since A = 1/,/mq), we have
Pu W[ < W5 = ME] < 0.5,

with probability at least 1 — n(_ﬁo.

Let R = Zk21(PQPHPQ)k. Let Ny, N, denote 1/2-nets for S~ S"2~! where S™~!
is a unit Euclidean sphere in R".A subset N of R™ is referred to as a &-net, if and
only if, for every y € R™ there is a y; € N for which |y — y1|| < £ (here we used the
Euclidean distance metric) [68].

By [68, Lemma 5.2], the cardinality of the 1/2-nets Ny and Nj is 5™ and 5" respec-
tively.

By [68, Lemma 5.4],

IRE)[= sup  (y,R(E)z)

mES"LZ*l,yES"l*l

<4 sup (y,R(E)z). (B.20)

2€N2,yENy

For a fixed pair (y,x) of unit-normed vectors in N7 x Ny, define the random variable
X(z,y) := (y, R(E)z) = (R(yz"), E).

Conditional on §2 = supp(E), the signs of E are i.i.d. symmetric and Hoeffding’s inequal-

ity gives

212
P(|X(z,y)| > t]€) SQ@XP(_W)'
F
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Now since ||yz*||r = 1, the matrix R(yz*) obeys [|R(yx*)||r < ||R| and, therefore,

P swp (Xl > ¢]2) < 2NNl exp( s ).

2N yENI IR

On the event {||PoPy| < o},

2
2% 9
”R” SZU - 1_0,2

k>1

and, therefore, letting v = 12_7‘32, we have,

PAIR(E)] > &)

<POA[R(E)| > Z,[PoPul < 0) + B([BaPul| > o)
27, /7
<P(sup,cn, yen, 4X (2, 9)| > LT | [PoPr| < o)+

P(|[PoPul| > o)

2721’1(1)’72
<2IN: | N exp(~ T35 ) + B(|[PoPr | > o)

<2 x 52" exp (— 27;;25672) + 3n(_1§0
<2 exp(—n(l)(().0570fy2 —log 25)) + 3n(_1§0
(as 0 = ps + 0.2 < 0.2156, = 0.057092 — log 25 > 2.7773)

§5n(_1§0 (when 2.7773n1y > 10log ngy, e.g., nay > 10.)

Thus

IW*|| < 67/80,
with probability at least 1 — 5n(_1§0. O

Proof of (c)
Proof. Observe that

Py WS = APy (I — Py)(Po — PoPyPo) ' E
= —APQL]P)H(]PQ — ]PQ]P)HIPQ)_lE

Let W5 := P W5, Clearly, for (i,7) € Q, (W3);; = 0 and for (i,5) € Q°, (W5),; =
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For (i,7) € Q°, it can be rewritten as
(W5)ij= (e, Wie)) = (eie, W)
= (eie;, —APHPQ(PQ — PQPHPQ)_1E>
= MX(i,5), E)
where X(i, j) := —(Pq — PoPnPo) ' PoPr(e;e}). Conditional on Q = supp(E), the signs

of E are i.i.d. symmetric, and Hoeffding’s inequality gives

2t
BWS)s| > 1A]0) < 20 (— o),
o X0 )
and, thus,
P sup [(W5)y| > tA|Q) < 2nimz exp(— = )
i,jEQC 3)ij > 1702 Sup”||X(z,j)||% .

Since (3.11) holds, on the event {||PoPn|| < o}, we have

IPoPr(eie;)|lr < IPoPulll|Pr(ee;)|lr < o\/2p,/log” n

On the same event, ||(Pq — PoPpPqo) Y| < (1 — ¢?)7! and, therefore,

20?2 p
X(i, )% < .
X < s o
Then unconditionally, letting v = (1;;’22 )2, we have

P(||]P>QLWS||OO > g) = lP’(IIW?IIoo > %)

log®n 2
< 2y exp (500 ) + P([PoPul| 2 o)

_ logn(1)72 n

T2 ~10
< 2n) e +3ng)

~10

< Sng)
The last bound follows since o = p; + 0.2 < 0.2156 by (B.8) and so v > 9.7798; and
n(y = exp(0.5019p,) by Assumption 3.1.2(c).

To sum up, with the assumption in Lemma 3.3.9, we have (a), (b) in Lemma 3.3.9

hold with probability at least 1 — 10n(_1§0.
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APPENDIX C. PROOF OF THE LEMMAS IN CHAPTER 4

C.1 Preliminaries

Lemma C.1.1. [44, Lemma 2.10] Suppose that P, P and Q are three basis matrices.
Also, P and P are of the same size, QP =0 and ||(I— PP)P|y = ¢.. Then,

1. ||[I-PP)PP'||; = |(I - PP)PP'||; = ||(I - PP)P|, = |1~ PP')P|s = ¢
2. |PP’ — PP'||; < 2|1 - PP)P||; = 2,

3. 1PQl, < ¢

4 /T=C <o (1-PP)Q) <1

Weyl’s inequality [?] (simplified version) states the following

Theorem C.1.2. Given two Hermitian matrices A and H,
Ai(A) — [[H|2 < Ai(A +H) < Ai(A) + [[H|2

Davis and Kahan’s sin # theorem [95] studies the rotation of eigenvectors by pertur-

bation.

Theorem C.1.3 (sinf theorem [95]). Given two Hermitian matrices A and H and

suppose that A satisfies

A0 E
A= [EEL}
0 A | |E/
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where [E E| | is an orthonormal matriz. Suppose that A + H can be decomposed as

Ao || F
A+H= {FFL}
0 A |F/

where [F F ] is another orthonormal matriz and is such that rank(F) = rank(E). Let
R = (A+H)E — AE = HE. If \uin(A) > Amax(AL), then

R

I = FE)El2 < e ) = A (@) — (L)

Remark C.1.4. In the above theorem, let r = rank(F). If the decomposition of A + H
is obtained by EVD, then Apax(A1) = A1 (A +H) < A\y1(A) + ||H]|2. The inequality
follows using Weyl. Moreover, if Amin(A) > Apax(AL), then A1 (A) = Apax(AL). Thus
a useful corollary of the above result is the following. If Apin(A) — Amax (A1) — ||H|l2 > 0,

then
I, |
)\min(A) - )\maX(AJ_) - ”H“2

I(I-FF)E[; <
Lemma C.1.5 (Cauchy-Schwarz for a sum of vectors). For vectors x; and yy,

(Z xt'yt)Q < (Z ||xt||§) (Z ||yt||§>

Lemma C.1.6 (Cauchy-Schwarz for a sum of matrices). For matrices X; and Yy,

1 < 1 & 1 <
— X. Y, < Amax | — X, X, Amax | — Y.Y,

2
2
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Proof of Lemma C.1.6.

za: Xthl
t=1

2 2

= max |x’ XY,
Ixlj=1 <zt: : t) Y

2 yll=t

a 2

= max | Y (X/x)/(Y/y)

[[x[=1

lyll=1 1=t
a «
2 2
< max (Z ”Xt,X“z) (Z ||YtIY||2>
lyll=1 \=1 =
o «
= max X’ X, X, x - maxy' YY/y
et ; T st ; o

= )\max (i XtXt/> )\max <i Ythl>
t=1 t=1

The inequality is by Lemma C.1.5. The penultimate line is because ||x||3 = x'x. Multi-

plying both sides by (é)2 gives the desired result. O

Lemma C.1.7 (Exchanging the order of a double sum).

a—1 t
SN he=d0<r<to<t<a-1fi,
t=0 7=0 t,T

=Y 0<r<t<a-1lf,
t,T

=Y 0<r<a-1lF<t<a—1)fi,
t,T

a—1 a—1

=22 Jir

7=0 t=7

The following lemma follows in an exactly analogous fashion.
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Lemma C.1.8 (Exchanging the order of a double sum).

tot+a—1 tota—1tog+a—1
DI 2 i
t=tg T=to T=to

Lemma C.1.9 (A summation used very often). We have

t0+a 1

) 102(1 — 1)
DIDILEFEHIEr

t=tg T=to

Thus

to+a—1 t

1 Lo o)
it i) DI DU e

t=to T=to

Ly (1—p2(=tot) - And Yo yote!

1-b2

Proof: Zizto p2E-T) =

b2(1—b2°‘))
-5

(1 b2t to+1)) %(a_

1- b2 1-b

Lemma C.1.10. Let X, Y, and Z be random variables. Assume that X is independent
of {Y,Z}. Then

E[XY|Z] = E[X|E[Y|Z]
Proof. By the chain rule, fxyz(z,y|2) = fxy.z(x|y, 2) fyz(y|2). Because X is indepen-
dent of both Y and Z, fxyvz(zly, z) = fx(x). O
Lemma C.1.11. For an event £ and random variable X, P(E]X) > p for all X € C

implies that P(E|X € C) > p.

Theorem C.1.12 (Matrix Azuma). [96, Theorem 7.1] Consider a finite adapted se-
quence Zy, t = 1,2,...a, of n x n Hermitian matrices, and a fixed sequence A; of

Hermitian matrices that satisfy
E[Z/|Z1,Zs,...,Z, 1] =0 and Z, <A with probability 1.

Define the variance parameter

%= H ZAt2
t

Then, for all e > 0,
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The following corollary extends the above result to the case where the conditional

expectation is not zero and when we also condition on another random variable.

Corollary C.1.13 (Matrix Azuma conditioned on another random variable for a nonzero

mean Hermitian matrix). Consider an a-length sequence {Z;}i—1 2. o of random Her-

.....

mitian matrices of size n X n and a random wvariable X that we condition on. As-
sume that, for all X € C, (i) Pr(b)I =X Z; <X bI|X) =1, for 1 <t < « and (i1)
bsl = L5 \E[Z4|Z1,Zs,..., 21, X] 2 bgd. Then for all € >0,

1 < —ve?
Pr{ dwae [ =S Z, | <by+elx|>1- e
(o (352 20 21 ne (5 255)
pra. (1 Za:z Sbho—elX | >1-ne o€
min - - - - - X 77 7 \o
>3 t T P 8(ba — by)?

Proof. At certain places, where the meaning is clear, we use E; ;[Z;|X] to refer to

E[Zt’Zb ZQv SRR Zt—17X]

1. Let Y, := Z; — E;_1(Z4|X). Clearly E, ;(Y,|X) = 0. Since for all X € C,
Pr(b;I X Z; < bI|X) = 1 and since for an Hermitian matrix, Apax(.) is a convex
function, and A\pin(.) is a concave function, oI < E;_1(Z;|X) < b1 for all X € C.
Therefore, Pr(Y,*> < (by — b)?I|X) = 1 for all X € C. Thus, for Theorem C.1.12,
o2 = || 325 (b — b1)*I|]2 = a(by — by)?. For any X € C, applying Theorem C.1.12

for {Y;}i=1.. o conditioned on X, we get that, for any € > 0,

1 o
Pr (M (a Z\Q) <
=1
By Weyl’s inequality, )\max(é Yo Yy = /\max(é Yoo (Zy —Ei1(Z4] X)) > Amax
(é Z?:l Zt) + )\min(é Z?:l _Etfl(zt’X»-

Since Amin(= Yo —Eim1(Z4] X)) = —Amax (£ 30 Beo1(Zy| X)) > —by, thus Apax
(2301 YY) > Amax(£ 300, Zy) — ba. Therefore,

1 (0%
Pr (/\max (— g Zt> <bs+e
o
(=1

X|>1 e o forall X €C
—nexp | ——— r
P\ 8y — b1)?

2

—Qe
X 1— — | forall X € C
) > n exp <8(b2—b1)2> or a S
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2. Now let Yy = E;_1(Z|X) — Z;. As before, E;_1(Y|X) = 0 and conditioned on any
X €C,P(Y? = (by — b))*I|X) = 1. As before, applying Theorem C.1.12, we get

that for any € > 0,

1 « —ae?
Pr A [ = DY <‘X >1— _T% ) frall X eC
' < (Oé t=1 t) = > e (8(b2 - b1)2> o
By Weyl’s inequality, Amax(= > p Yi) = Amax(2 2opey (Bee1(Ze] X) — Z4)) > Ain

(2 2 Bt (Ze] X)) A max (2 22001 =Z) = Aain (5 220y Bro1 (Ze| X)) = Aaain (5 Doy
Z;) > bz — /\min(é > o1 Zt). Therefore, for any € > 0,

1 & —ve?
Pr{ i (=5 Z Zb—‘X >1— _ T N fral XeC
( (az ) n ) o (g, ) X e
0

We can further extend this to the case of a matrix which is not necessarily Hermitian.

Corollary C.1.14 (Matrix Azuma conditioned on another random variable for an arbi-

-----

of size nq X ny and a random variable X that we condition on. Assume that, for all
X €C, (i) Pr(||Zi]|2 < 01| X) = 1 and (ii) ||§Z?:1E[Zt|Z1,Z2,...,Zt_l,X]||2 < bs.
Then, for all e > 0,

1 [0
Pr (HE;Zf

Proof. At certain places, where the meaning is clear, we use E; {[Z;|X] to refer to

—ae?

<refx) 21 ()

]E[Zt’zla Z2a ceey Zt717X]
oM
Define the dilation of an 1y X ny matrix M as dilation(M) := . Notice that
M O

this is an (ny + na) X (ny + ne) Hermitian matrix [96] . As shown in [96, equation 2.12],

Amax ( dilation(M)) = || dilation(M)]|, = M, (C.1)
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Thus, the corollary assumptions imply that P(|| dilation(Z,)||s < b1|X) = 1 forall X € C.

y (C.1) and the definition of dilation,

1 . |
- ;Et_l[dﬂatlon(ztﬂ)(] — dilation (5 ;Et_l[ZtIXO < b1

Thus, applying Corollary C.1.13 to the sequence {dilation(Z;)};=1._«, we get that,

( max ( Z dilation(Z ) <by+e

Using (C.1), Amax(= > p, dilation(Z;)) = Amax(dilation(Z >0 Z;)) = |2 300, Zy|l»

gives the final result. O

.....

e
X) >1—(n1 +ng)exp <%> forall X €C
1

C.2 Proof of Lemma 4.5.20 (Initial Subspace Is Accurately

Recovered)

Proof of Lemma 4.5.20. Define M := t“‘"‘l‘“ mm,;’, A =

ttram

Zt“am £.£," and perturb

ttlam
=M — A.

Using Theorem C.1.3 (sin theta theorem) followed by Weyl’s inequality for Ay (A1) =
Amax (M), if Ay (A) — A1 (A) — [|[perturb|| > 0, then

||perturb||,

dlf ]-S rainaP rain S
(Pin, Prasin) < 50073 2 (&) — [perturb;

(C.2)

We will use Azuma to lower and upper bound A, (A), to upper bound A,,;1(A) and to

upper bound ||perturd||s. Let

1 _
€= T b20 0017rpewCA

To get the first three bounds, we need to bound Ayay (A — — pran S p-D% ) and

ttrain

then use Weyl’s inequality. Now A = pram S ST VT Tw v We proceed

ttraln

as in Section 4.6.1 but with the difference that we include —-—— ?:raf“ Zizo LIy

terain

into term21. Another difference is that ¢, = 1 and so £;,_1 = 0 (and so terml = 0 and
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term3 = 0). Thus we get

1 ttrain  t

Z Z b2(t_7)27) < 3e

train =1 7—=0

—3€ < Amax(A —

with probability 1 — 3 (2n) exp <_t“ai“§22((12;$))j (1-b)” > Thus, with the above probability,

using Weyl’s inequality and Lemma C.1.9,

t t
train 1 b2
2(t—7) —
Arg(A) = A ttr > b —3e2 b2(1 - m)k — 3¢
ain =1 7—=0 rain
ttraln t 1
Ao (A) < A, §j§jb2” )+ 3¢ < 7

t
train =1 7—0

ttram t

Zb“ %) 43¢ =0+ 3¢

tram t=1 =0

Arg1(A) < >‘7'0+1

(the above follows because X, has rank rq for all ¢ < t,i,). Next consider ||perturb||s.

It is easy to see that

|Iperturbls < ZH

Zﬂtwtll + 15

train train

Zwtwt“2

Proceeding as in Section 4.6.2 for the first term and using the deterministic bound of

0.037pewCA™ for the second term, we get
|perturbl|a < 0.037pewCA™ + 2¢€

with probability 1 — (2n)exp (%jg{b)z) Using the above bounds and Weyl’s in-

equality, we can conclude that

train -= Ao (M) < A (A) + ||perturbl|s < 5 -

< 1 b?
Arain 7= Arg (M) > A (A) — [[perturbl[y > 1 b2(1 - toram(1 — 1)2))

A" — 0.08r¢A”

w.p. at least 1 — 3 (2n)exp (*t"aingz((;;ji))i(l*bV) — (2n) exp (%) >1—-4-

(2n) - exp <_t“ai“62(1_b2)2(1_b)2) > 1 —n1% The last inequality follows because tyain >

32(2rv2)?
128(r~?)?2
(1—b)2(0.0012~new<,\—)2 (11logn + log8).
Thus, using the fact that 1/t < (r¢)?, (1 — —ttrainlg-_bQ)) (1— ((1 )b;’)) and so we

—10
)
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~

a) Apain <

train — 1— b2

=EAT 4+ 0.08r¢A < 12725

b) A > (1= CSE) A= —0.08r¢CA~ > 0.8

train = (1 b2)

¢) and

0.03rneng py
JA~ — 0.087CA~

dif(]-strainy Ptrain) S S O-Oglrnewg S TOC

1
1-b2 (1 ttraln( b2)

C.3 Proof of Lemma 4.5.21 (Bounds On And C k)

]newk

Proof of Lemma 4.5.21. Proof of item 1 of the lemma: This follows directly from the

bounds for ba, ba,i, bu in Fact 4.5.37, and by using Lemma 4.5.20.

b]HIk

Proof of item 2 of the lemma: Recall that C with the terms

,new, k-

" ba - ba,L — buk
on the RHS defined in Lemmas 4.5.34, 4.5.35, 4.5.36. The proof approach is similar

to that of [44, Lemma 6.1] and almost exactly the same as that of [85, Lemma 6.14].
The proof is as follows. With the bound in Fact 4.5.37, and since C:ew’k is an increasing

function of ba ; and by, and a decreasing function of b, we have

. 0.156 + 0.17pewC

<0.19 b new( < 1074
newd = 579999 — 0.005menC — (0.156  0.12rmenC) CCAUSC Thow( <

For k > 2, we have

N 0.073C 51+ 0-17newC
new ke 0.9999 — 0.0057newC — (0.073¢ 1y oy + 0.127eC)

Clearly ¢ Also =1

new,

, is an increasing function of < 0.19 <

Jnewl ]neWO

< 0.19. Using the bound

newk 1

Thus, one can use induction to show that J S CJ new k1

TnewG < 1074 we can get ¢ < 0.1¢0 11 + 0.157004C.

Proof of item 3 of the lemma: Recall that
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Substituting in the bounds for by, b4 ;, and bg ; | in Fact 4.5.42 gives

C~+ < 0.072(7 + Tnew)C + 0.19764C
¥ =0.9999 — (0.2 4 0.2657newC + 0.072(7 + ey )C)

S 009(7“ + Tnew)C + 0-1197nneWC

< 0.15(r + Poew)C

where we assume r,., < 7 to get the last inequality.

Using the theorem’s assumption r;j := |[G; x| > 0.15(r + rpeyw ), the claim follows. O

C.4 Proof of Lemma 4.5.25 (Compressed Sensing Lemma)

This proof’s approach is similar to that of [44, Lemma 6.4]. The proof uses the
denseness assumption and subspace error bounds ;. < ¢, and (jnewr-1 < C;,rnew,k—h
that hold when Xg, 1 € F%fl for 4; = w; or 4; = wu; + 1, to obtain bounds on
the restricted isometry constant (RIC) of the sparse recovery matrix ®; and the sparse
recovery error ||b||2. Applying the noisy compressed sensing (CS) result from [12] and

the assumed bounds on ¢ and 7, the lemma follows.

Lemma C.4.1 (Bounding the RIC of ®, [44, Lemma 6.6], [85]). Recall that (j, :=

(X = PPy )P)«ll2-

1. Suppose that a basis matriz P can be split as P = [Py Py] where Py and Py are

also basis matrices. Then k2(P) = maxr. 1< |[I7' P[5 < £2(P1) + £2(P3).

~

2. Hg(P(]),*) S (K;s,*)2 + QC* fO?“ a”j
J. K“S(p(j),new,k) < Ksnew T gj,new,k + Cj,* for all j and k.
4. Fort € [(ujo1 + K)a+ 1, (i + Da), §,(21) = w2(P().0) < (Ke)® + 2Gj0.

~

5. Fork=1,...,K—1, fort € [(a;+k)a+1, (i;+k+1)a] 6,(®;) = £2([Pj)x Pymews]) <

S

A~

K3 (P().e) + K2 (P mew) < (Ko)” + 26 + (Ronew + Gmews + i)

Corollary C.4.2.
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1. Conditioned on T'j_1 end, fort € [t;, (U4 1)a], 65(®;) < as(Pr) < (Kasu)?+2 ]+* <

0.1 < 0.1479, and ()7 (@0)7] 2 < 152y < 1.2:= "

2. For k = 2,...,K and u; = u; or i; = u; + 1, conditioned on F?,J)c—p fort €

[(aj + k- 1)0‘ + 1, (aj + k)a], 53(@0 < 523(@0 < (’i28,*)2 + 2 ;,—* + (’i28,new +
cH + ()7 < 0.1479, and [|[(4)7 (1)) e < 15y < 12:= 07

j,new,k—1

3. For uj = u; or u; = uj + 1, conditioned on F?”'K, forte[(t; + K)o+ 1t — 1],
55((I)t) < 523(‘1)75) < (/{257*)2 + 2 J—t_* < 0.1 < 01479, and H[(‘I)t)f];/(q)t)ﬁ]_lng <
—1_531(@) <12:=¢".

Proof. This follows using Lemma C.4.1, the definitions of I';_; eng and ijk, and Fact

4.5.24. O

Proof of Lemma 4.5.25. We will prove claim 2). The others are done in the same way.

By Fact 4.5.24, Fi’é_l implies that (. < ¢, and (jnewr-1 < C]—",_new,k:—l'

a) For t € [(G; + k — Do+ 1, (0 + k)], by := (I — P,y P,_1') (€ + w;). Thus, using
Fact 4.5.26,

||bt||2 < gcor = 5

b) By Corollary C.4.2, 0y,(®;) < 0.15 < v/2 — 1. Given |T;| < s, ||bil2 < &, by [12,

Theorem 1.1], the CS error satisfies

44/1 + do5(Py) ¢ <7

1- (\/5 + 1)625(P¢)

“)A(t,cs - Xt“2 S

c) Using the above, [X;es — X¢l|oc < 7€, Since minger; [(X¢)i| > Tmin and (x;)7e = 0,
miner; [(Xees)i| = Tmin — 7€ and max;c 7, |(Xpes)i| < 7€ If w < @pin — 7€, then 7. D T,
On the other hand, if w > 7£, then 7, C T,. Since w satisfies 7€ < w < Tppin — 7€, the

support of x; is exactly recovered, i.e. T, =T,
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d) Given 7, = T;, the least squares estimate of x, satisfies (%), = [(®,)7]ly, =
[(‘pt)'];]T((tht + @t/et + <I>twt) and ()A(t)ﬁ = 0. AISO, (‘bt)'nlét = ITt/Qt (thlS fol-
lows since (®;)7; = ®I and ®,/®, = ®;). Using this, the error e; := X; — x;

satisfies (4.11).

e) Using Fact 4.5.26 we get the bound on [|e|s.

C.5 Proof of Lemmas 4.5.27, 4.5.28, 4.5.29

Proof of Lemma 4.5.27. This proof is similar to that of Lemma 6.16 of [85].

Notice that Pr(NODETS} | %) = Pr <>\max (LD, D) < thresh for all u € [i; +
K+@W+1)+1,uj —1] | f%) for 4; = uj or u; = u; + 1.

Recall that Tjepa = (I N NODETS]") U (T3 N NODETS! ™). Recall from
Fact 4.5.24 that I'; .,q implies that dif(f’(j),*, Py.) <r¢.

Also, for w € [u;+ K+ (0 +1) +1,ujq — 1], PA’M_L* = lf’(j+1)7* and for all t € 7, for
these u’s, vy = Pja; = P ..

Using Lemma 4.5.25, under the given conditioning, ||e;|lz < %(2 T AT+ 2€,) for

times t € J, for all these u’s. Therefore,

1 1 .
)\max (_DuDu/> = )\max - I - Puaf *Puaf */ 'e 'e ! I - Puozf *Puozf */
a <a§:< 1, 1 €k 1, 1)

teJu

1 R R R R
= Amax (5 Z(I = PP ) (b —e) (b —e) (I - P(j+1),*P(j+1),*/)>

teJu
(2¢;.)%r? 2(f VY (9T (20 Ay + 26,))?
vk 2 + 2 + 2 w J,% J,%*
2 00500 | 24-(0.05+ VOO00G)(A™ | 144 (V005 + VO.03)°CA-
- 0.81 0.81 0.81
< 0.5\, = thresh

The first inequality uses the bound on [[(I — 15(]-+1),*15(j+1)7*’)£t|]2 = || ®(j31),0€t]]2 from

Fact 4526 and-the.bound on |le:|s from Lemma 4.5.25. The second inequality uses
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the bound on €, from Model 7 and the Theorem; the bound ¢ < (O'L’\_ from the

T‘+T’new)372

Theorem and the lower bound on A_... from Lemma 4.5.20. O

train

Proof of Lemma 4.5.28. This proof is similar to that of the corresponding lemma from
[85]. We will prove that Pr (DET”J'Jrl | Xuj) > paet,1 for all Xy, € T'j_1 ena. In particular,
this will imply that Pr(DET* ™ | X,.) > paes1 for all X,, € I'j_1ena N DET™ and so,
by Lemma C.1.11, we can conclude that Pr(DET“ ™ | T';_1 cnq, DET™) > pges.i-

The following claim is a direct corollary of Lemmas 4.5.34 and 4.5.36. It follows
exactly as the proof of these lemmas for the k = 1 case but with using u = u; + 1 instead

of u=1;+1.

Pr ()\min (AujJrl) > bA | Xuj) >1 — DA,

Pr (|Hy, 412 < b ‘ Xy,) >1—pu

for all X, € I'j_1 ena- By Lemma 4.5.21, bp — bg,; > thresh.

From the algorithm, notice that, M, = +D,D,’. Thus,
Pr (DET“*" | X,,) = Pr (Amax(My,11) > thresh | X,,)

By Weyl’s inequality and the above,

V

)\max(Muj—i—l) - )\max(Au]-—i—l) - ||Huj+1||2

Amin(Auj'—f—l) - ||HUj+1 ||2

AV

Z bA - bHJ 2 thresh

with probability at least 1 — pa — pu = Pdet,1, whenever X, € I'j_1 eng. Thus the result
follows. 0

Proof of Lemma 4.5.29 (p-PCA lemma). This proof is similar to that of the correspond-
ing lemma from [85]. To prove this lemma we need to show two things. First, condi-

tioned on F?,Jk—p the k™ estimate of the number of new directions is correct. That is:

Uy

+ . o .
e must show ¢ new,r < C again conditioned on I';3 ;.

j,new,k?
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A A

Notice that 7j sew,x = 1ank(P (j) new,r). To show that rank(P () new,k) = jnew, We need
to show that for u = 4; +k, k = 1,..., K, A, . (M) > thresh and A, +1(M,) <
thresh. Observe that, M, = A, + H,. By Lemma 4.5.21, Lemmas 4.5.34 and 4.5.35
followed by Lemma C.1.11, Apin(Ay) > ba > ba i > Amax(A, 1) with probability at
least 1 — pa — pa,1 under the given conditioning. Since A, is of size 7jpew X 7 new, this
means that A, . (Ay) = Anin(Ay) and A, 41(Ay) = Amax(A,1). Using these facts,
Weyl’s inequality, Lemmas 4.5.34, 4.5.35 and 4.5.36, and the bounds from Lemma 4.5.21,

we can conclude that with probability at least pypea, under the given conditioning,

)\Tj,new (Mu) > >\7'j,new (Au) - ||Hu||2

= Amin(Au) - ”HuH2 Z bA - bH,k 2 thresh
and

At (M) < Ay 1 (Aw) + [[Hy |2

= )\maX(Au’J_) + ||Hu||2 < bA’J_ + bIHI,k < thresh

Therefore rank(f’(j)meka) = Tjnew With probability greater than pypc.. under the given
conditioning.
To show that (jnewr < (ews> We use Lemmas 4.5.34, 4.5.35, and 4.5.36. Using

A

rank(P () new,k) = 7jnew and applying Lemma 4.5.33 with these bounds; using A_,,, > A7;

new

and finally using Lemma C.1.11 gives the desired result. O

C.6 Proof of Theorem 4.2.3
The proof follows with the following re-definitions. Redefine I'; ¢q as
Uj U uj+1 uj+1
Tjent = (I NNODETS} ) U (I nNODETS} )

We get Corollary 4.5.32 then by just combining Lemmas 4.5.27, 4.5.28, 4.5.29. The

he, lower bound on «, using Fact 4.5.24 and Lemma 4.5.25.
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The proof of the Lemmas 4.5.27, 4.5.28, 4.5.29 follows using the following redefini-

tions. Re-define

1. f’(jﬂ),* = 1553_ +ka- Thus, given all subspace change times are correctly detected,

A

P = [P)ss Pljmewx). Thus, T¢, 4 implies Ciy1e < G + mew, -

2. C]—t—* = (TO+ (.7 - 1)rnew)c and Cj,—add = (TO +jrnew)g- Thus, Cj—i—l,* S Cj,* +Cj,new,K S

+
J+1x
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