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ABSTRACT

In the first part of this work, we study sparse recovery problem in the presence of

bounded noise. We obtain performance guarantees for modified-CS and for its improved

version, modified-CS-Add-LS-Del, for recursive reconstruction of a time sequence of s-

parse signals from a reduced set of noisy measurements available at each time. Under

mild assumptions, we show that the support recovery error and reconstruction error of

both algorithms are bounded by a time-invariant and small value at all times.

In the second part of this work, we study batch sparse recovery problem in the

presence of large and low rank noise, which is also known as the problem of Robust

Principal Components Analysis (RPCA). In recent work, RPCA has been posed as a

problem of recovering a low-rank matrix L and a sparse matrix S from their sum, M :=

L + S and a provably exact convex optimization solution called PCP has been proposed.

We study the following problem. Assume that we have a partial estimate of the column

space of the low rank matrix L, we propose here a simple but useful modification of

the PCP idea, called modified-PCP, that allows us to use this knowledge. We derive its

correctness result which shows that modified-PCP indeed requires significantly weaker

incoherence assumptions than PCP, when the available subspace knowledge is accurate.

In the third part of this work, we study the “online” sparse recovery problem in

the presence of low rank noise and bounded noise, which is also known as the “online”

RPCA problem. Here we study a more general version of this problem, where the goal

is to recover low rank matrix L and sparse matrix S from M := L + S + W and W is

the matrix of unstructured small noise. We develop and study a novel “online” RPCA

algorithm based on the recently introduced Recursive Projected Compressive Sensing
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(ReProCS) framework. The key contribution is a correctness result for this algorithm

under relatively mild assumptions.
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CHAPTER 1. INTRODUCTION

The static sparse reconstruction problem has been studied for a while [2, 3, 4, 5, 6].

The papers on compressive sensing (CS) from 2005 [7, 8, 9, 10, 11, 12] (and many other

more recent works) provide the missing theoretical guarantees – conditions for exact

recovery and error bounds when exact recovery is not possible. In more recent works, the

problem of recursively recovering a time sequence of sparse signals, with slowly changing

sparsity patterns has also been studied [13, 1, 14, 15, 16, 17, 18, 19]. By “recursive”

reconstruction, we mean that we want to use only the current measurements’ vector and

the previous reconstructed signal to recover the current signal. This problem occurs

in many applications such as real-time dynamic magnetic resonance imaging (MRI);

single-pixel camera based real-time video imaging; recursively separating the region of

the brain that is activated in response to a stimulus from brain functional MRI (fMRI)

sequences [20] and recursively extracting sparse foregrounds (e.g. moving objects) from

slow-changing (low-dimensional) backgrounds in video sequences [21]. For other potential

applications, see [22, 23].

An important assumption introduced and empirically verified in [13, 1] is that for

many natural signal/image sequences, the sparsity pattern (support set of its projection

into the sparsity basis) changes slowly over time. In [14], the authors exploited this fact to

reformulate the above problem as one of sparse recovery with partially known support and

introduced a solution approach called modified-CS. Given the partial support knowledge

T , modified-CS tries to find a signal that is sparsest outside of T among all signals that

satisfy the data constraint. Exact recovery conditions were obtained for modified-CS
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and it was argued that these are weaker than those for simple `1 minimization (basis

pursuit) under the slow support change assumption. Related ideas for support recovery

with prior knowledge about the support entries, that appeared in parallel, include [24],

[25]. All of [14], [24] and [25] studied the noise-free measurements’ case. Later work

includes [26, 27].

Error bounds for modified-CS for noisy measurements were obtained in [28], [29], [30].

When modified-CS is used for recursive reconstruction, these bounds tell us that the

reconstruction error bound at the current time is proportional to the support recovery

error (misses and extras in the support estimate) from the previous time. Unless we

impose extra conditions, this support error can keep increasing over time, in which case

the bound is not useful. Thus, for recursive reconstruction, the important question is,

under what conditions can we obtain time-invariant bounds on the support error (which

will, in turn, imply time-invariant bounds on the reconstruction error)? In other words,

when can we ensure “stability” over time? Notice that, even if we did nothing, i.e. we

set x̂t = 0, the support error will be bounded by the support size. If the support size

is bounded, then this is a naive stability result too, but is not useful. Here, we look for

results in which the support error bound is small compared to the support size.

Stability over time has not been studied much for recursive recovery of sparse signal

sequences. To the best of our knowledge, it has only been addressed in [1], and in

very recent work [19]. The result of [19] is for exact dynamic support recovery in the

noise-free case and it studies a different problem: the MMV version of the recursive

recovery problem. The result from [1] for Least Squares CS-residual (LS-CS) stability)

holds under mostly mild assumptions; its one limitation is that it assumes that support

changes occur every p frames. But from testing the slow support change assumption for

real data (medical image sequences), it has been observed that support changes usually

occur at every time, e.g. Fig. 1.1. This important case is the focus of current work. We

explain the differences of our results w.r.t. the LS-CS result in detail later in Sec 2.5.5.
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Principal Components Analysis (PCA) is a widely used dimension reduction tech-

nique that finds a small number of orthogonal basis vectors, called principal components

(PCs), along which most of the variability of the dataset lies. Accurately computing

the PCs in the presence of outliers is called robust PCA. Outlier is a loosely defined

term that refers to any corruption that is not small compared to the true data vector

and that occurs occasionally. As suggested in [31], an outlier can be nicely modeled as

a sparse vector. The robust PCA problem occurs in various applications ranging from

video analysis to recommender system design in the presence of outliers, e.g. for Netflix

movies, to anomaly detection in dynamic networks [32]. In video analysis, background

image sequences are well modeled as forming a low-rank but dense matrix because they

change slowly over time and the changes are typically global. Foreground is a sparse

image consisting of one or more moving objects. In recent work, Candes et al and Chan-

drasekharan et al [32, 33] posed the robust PCA problem as one of separating a low-rank

matrix L (true data matrix) and a sparse matrix S (outliers’ matrix) from their sum,

M := L + S. They showed that by solving the following convex optimization called

principal components’ pursuit (PCP)

minimizeL̃,S̃ ‖L̃‖∗ + λ‖S̃‖1

subject to L̃ + S̃ = M
(1.1)

it is possible to recover L and S exactly with high probability under mild assumptions.

This was among the first recovery guarantees for a practical (polynomial complexity)

robust PCA algorithm. Since then, the batch robust PCA problem, or what is now also

often called the sparse+low-rank recovery problem, has been studied extensively, e.g. see

[34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

In this work, we introduce modified-CS-add-LS-del which is a modified-CS based

algorithm for recursive recovery with an improved support estimation step and we explain

how to set its parameters in practice. The main contribution of this work is to obtain

conditions for stability of modified-CS and modified-CS-add-LS-del for recursive recovery
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of a time sequence of sparse signals. Under mild assumptions, we show that the support

recovery error and the reconstruction error of both algorithms is bounded by a time-

invariant value at all times. The support error bound is proportional to the maximum

allowed support change size. Under slow support change, this bound is small compared

to the support size, making our result meaningful. Similar arguments can be made for

the reconstruction error also. The assumptions we need are: weaker restricted isometry

property (RIP) conditions [10] on the measurement matrix than what `1 minimization for

noisy data (henceforth referred to as noisy `1) needs; bounded cardinality of the support

and support change; all but a small number of existing nonzero entries are above a

threshold in magnitude; appropriately set support estimation thresholds; and a special

start condition. Here and elsewhere in the paper noisy `1 (or simple CS) refers to the

solution of (2.1).

A second main contribution of this work is to show two examples of signal change

assumptions under which the required conditions hold and prove stability results for

these. The first case is a simple signal change model that helps to illustrate the key ideas

and allows for easy comparison of the results. The second set of assumptions is realistic,

but more complicated to state. We use MRI image sequences to demonstrate that these

assumptions are indeed valid for real data. The essential requirement in both cases is

that, for any new element that is added to the support, either its initial magnitude is

large enough, or for the first few time instants, its magnitude increases at a large enough

rate; and a similar assumption for magnitude decrease and removal from the support.

Let S be the bound on the maximum support size and Sa the bound on the maximum

number of support additions or removals. All our results require s-RIP to hold with

s = S + kSa where k is a constant. On the other hand, noisy `1 needs s-RIP for s = 2S

[12] which is a stronger requirement when Sa � S (slow support change).

In the second part we study the following problem. Suppose that we have a partial

estimate of the column space of the low rank matrix L. How can we use this information
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Figure 1.1: Slow support change in medical image sequences. We used the two-level
Daubechies-4 2D discrete wavelet transform (DWT) as the sparsity basis. Since real image
sequences are only approximately sparse, we use Nt to denote the 99%-energy support of the
DWT of these sequences. The support size, |Nt|, was 6-7% of the image size for both sequences.
We plot the number of additions (left) and the number of removals (right) as a fraction of |Nt|.
Notice that all changes are less than 2% of the support size.

to improve the PCP solution, i.e. allow recovery under weaker assumptions? We propose

here a simple but useful modification of the PCP idea, called modified-PCP, that allows

us to use this knowledge. We derive its correctness result (Theorem 3.1.1) that provides

explicit bounds on the various constants and on the matrix size that are needed to

ensure exact recovery with high probability. Our result is used to argue that modified-

PCP indeed requires significantly weaker incoherence assumptions than PCP, as long as

the available subspace knowledge is accurate. To prove the result, we use the overall

proof approach of [32] with some changes (see Sec 3.3).

An important problem where partial subspace knowledge is available is in online or

recursive robust PCA for sequentially arriving time series data, e.g. for video based

foreground and background separation. In this case, as explained in [44], the subspace

spanned by a set of consecutive columns of L does not remain fixed, but instead changes

over time and the changes are gradual. Also, often an initial short sequence of low-rank

only data (without outliers) is available, e.g. in video analysis, it is easy to get an initial

background-only sequence. For this application, modified-PCP can be used to design a

piecewise batch solution that will be faster and will require weaker assumptions for exact

recovery than PCP. This is made precise in Corollary 3.2.1 and the discussion below it.

We show extensive simulation comparisons and some real data comparisons of modified-

PCP with PCP and with other existing robust PCA solutions from literature. The im-
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plementation requires a fast algorithm for solving the modified-PCP program. This is

developed by modifying the Inexact Augmented Lagrange Multiplier Method [45] and

using the idea of [46, 47] for the sparse recovery step. The real data comparisons are for

a face reconstruction / recognition application in the presence of outliers, e.g. eye-glasses

or occlusions, that is also discussed in [32].

When RPCA needs to be solved in a recursive fashion for sequentially arriving data

vectors it is referred to as online RPCA. Our “online” RPCA formulation assumes that

(i) a short sequence of outlier-free (sparse component free) data vectors is available or

that there is another way to get an estimate of the initial subspace of the true data

(without outliers); and that (ii) the subspace from which `t is generated is fixed or

changes slowly over time. We put “online” in quotes here to stress that our problem

formulation uses extra assumptions beyond what are used by RPCA (or batch RPCA).

A key application of RPCA is the problem of separating a video sequence into foreground

and background layers [32]. Video layering is a key first step to simplifying many video

analytics and computer vision tasks, e.g., video surveillance (to track moving foreground

objects), background video recovery and subspace tracking in the presence of frequent

foreground occlusions or low-bandwidth mobile video chats or video conferencing (can

transmit only the foreground layer). In videos, the foreground typically consists of one or

more moving persons or objects and hence is a sparse image. The background images (in

a static camera video) usually change only gradually over time, e.g., moving lake waters

or moving trees in a forest, and the changes are global [32]. Hence they are well modeled

as being dense and lying in a low-dimensional subspace that is fixed or slowly changing.

Other applications where RPCA occurs include recommendation system design, survey

data analysis, anomaly detection in dynamic social (or computer) networks [32] and

dynamic magnetic resonance imaging (MRI) based region-of-interest tracking [48].
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1.1 Notation and Problem Definition

1.1.1 Notation

We use bold lowercase for vectors, bold uppercase for matrices, calligraphic uppercase

for sets or corresponding linear space.

We let [1,m] := [1, 2, . . .m]. We let ∅ denote an empty set. We use T c to denote the

complement of a set T w.r.t. [1,m], i.e. T c := {i ∈ [1,m] : i /∈ T }. We use |T | to denote

the cardinality of T . The set operations ∪, ∩, \ have their usual meanings (recall that

A\B := A∩Bc). If two sets B, C are disjoint, we just write D∪B \ C instead of writing

(D ∪ B) \ C.

For a vector, x, and a set, T , xT denotes the |T | length sub-vector containing the

elements of x corresponding to the indices in the set T . ‖x‖k denotes the `k norm of

a vector x. If just ‖x‖ is used, it refers to ‖x‖2. Similarly, for a matrix M, ‖M‖k
denotes its induced k-norm, while just ‖M‖ refers to ‖M‖2. M′ denotes the transpose

of M and M† denotes the Moore-Penrose pseudo-inverse of M (when M is full column

rank, M† := (M′M)−1M′). Also, MT denotes the sub-matrix obtained by extracting

the columns of M corresponding to indices in T .

We refer to the left (right) hand side of an equation or inequality as LHS (RHS).

For a matrix X, we denote by X∗ the transpose of X; denote by ‖X‖∞ the `∞ norm

of X reshaped as a long vector, i.e., maxi,j |Xij|; denote by ‖X‖ the operator norm or

2-norm; denote by ‖X‖F the Frobenius norm; denote by ‖X‖∗ the nuclear norm; denote

by ‖X‖1 the `1 norm of X reshaped as a long vector.

Let PI denote the identity operator, i.e., PI(Y) = Y for any matrix Y. Let ‖PA‖

denote the operator norm of operator PA, i.e., ‖PA‖ = sup{‖X‖F=1} ‖PAX‖F ; let 〈X,Y〉

denote the Euclidean inner product between two matrices, i.e., trace(X∗Y); let sgn(X)

denote the entrywise sign of X. We let PΘ denote the orthogonal projection onto linear

subspace Θ. We use Ω to denote the support set of matrix S, i.e., Ω = {(i, j) : S(i, j) 6=



www.manaraa.com

8

0}. We also use Ω to denote the subspace spanned by all matrices supported on Ω.

By Ω ∼ Ber(ρ) we mean that any matrix index (i, j) has probability ρ of being in the

support independent of all others.

Given two matrices B and B2, [B B2] constructs a new matrix by concatenating

matrices B and B2 in the horizontal direction. Let Brem be a matrix containing some

columns of B. Then B \Brem is the matrix B with columns in Brem removed.

We say that U is a basis matrix if U∗U = I where I is the identity matrix. We use

ei to refer to the ith column I.

We use the interval notation [a, b] to mean all of the integers between a and b, inclu-

sive, and similarly for [a, b) etc. For a set T , |T | denotes its cardinality and T̄ denotes

its complement set. We use ∅ to denote the empty set. For a vector x, xT is a smaller

vector containing the entries of x indexed by T . Define IT to be an n × |T | matrix of

those columns of the identity matrix indexed by T . For a matrix A, define AT := AIT .

We use ′ to denote transpose. The lp-norm of a vector and the induced lp-norm of a

matrix are denoted by ‖ · ‖p. We refer to a matrix with orthonormal columns as a basis

matrix. Thus, for a basis matrix P, P′P = I. For matrices P, Q where the columns of

Q are a subset of the columns of P, P \Q refers to the matrix of columns in P and not

in Q. For a matrix H, H
EVD
= UΛU′ denotes its reduced eigenvalue decomposition. For

a matrix A, the restricted isometry constant (RIC) δs(A) is the smallest real number δs

such that

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2

for all s-sparse vectors x [12]. A vector x is s-sparse if it has s or fewer non-zero entries.

For Hermitian matrices A and B, the notation A � B means that B − A is positive

semi-definite. For basis matrices P̂ and P, dif(P̂,P) := ‖(I − P̂P̂′)P‖2 quantifies error

between their range spaces.
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1.1.2 Problem definition

The first type of problems that we study here are as following. We assume the

following observation model:

yt = Atxt + wt, ‖wt‖ ≤ ε (1.2)

where xt is an m length sparse vector with support set Nt, i.e. Nt := {i : (xt)i 6= 0}; At

is a nt ×m measurement matrix; yt is the nt length observation vector at time t (with

nt < m); and wt is the observation noise. For t > 0, we fix nt = n.

Our goal is to recursively estimate xt using y1, . . .yt. By recursively, we mean, use

only yt and the estimate from t− 1, x̂t−1, to compute the estimate at t.

Remark 1.1.1 (Why bounded noise). All results for bounding `1 minimization error

in noise, and hence all results for bounding modified-CS error in noise, either assume

a deterministic noise bound and then bound ‖x̂ − x‖, e.g., [12], [49], [28, 50], [51]; or

assume unbounded, e.g. Gaussian, noise and then bound ‖x̂−x‖ with “large” probability,

e.g. [52], [53, Sec IV], [1, Section III-A], [51]. The latter approach is not useful for

recovering a time sequence of sparse signals because the error bound will hold for all

times 0 ≤ t <∞ with probability zero.

One way to get a meaningful error stability result with unbounded, e.g. Gaussian

noise, is to compute or bound the expected value of the error at each time, i.e. compute

E[(x̂t−xt)(x̂t−xt)
′] or bound some norm of it. This is possible to do, for example, for a

Kalman filter applied to a linear system model with additive Gaussian noise; and hence

in that case, one can assume Gaussian noise and still get a time-invariant bound on the

expected value of the error under mild assumptions. However, for `1 minimization based

methods, such as modified-CS, there is no easy way to compute or bound the expected

value of the error. Moreover, even if one could do this for a given time, it would not tell

us anything about the support recovery error (for the given noise sequence realization)

and hence would not be useful for analyzing modified-CS.
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As a sidenote, we should point out that, in most applications, the noise is typically

bounded (because of finite sensing power available). One often chooses to model the noise

as Gaussian because it simplifies performance analysis.

The second type of problems that we study here are as following. We are given a

data matrix M ∈ Rn1×n2 that satisfies

M = L + S (1.3)

where S is a sparse matrix with support set Ω and L is a low rank matrix with rank r

and with reduced singular value decomposition (SVD)

L = UΣV∗ (1.4)

We assume that we are given an n1 × rG basis matrix G so that (I −GG∗)L has rank

smaller than r. The goal is to recover L and S from M using G.

We explain the above a little more. With G as above, U can be rewritten as

U = [(GR \Uextra)︸ ︷︷ ︸
U0

Unew], (1.5)

where Unew ∈ Rn1×rnew and U∗newG = 0; R is a rotation matrix and Uextra contains rextra

columns of GR. Let r0 be the number of columns in U0. Then, clearly, r0 = rG − rextra

and r = r0 + rnew.

We use Vnew to denote the right singular vectors of the reduced SVD of Lnew :=

(I−GG∗)L = UnewU∗newL. In other words,

Lnew := (I−GG∗)L
SVD
= UnewΣnewV∗new (1.6)

From the above model, it is clear that

Lnew + GX∗ + S = M (1.7)
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for X = L∗G. We propose to recover L and S using G by solving the following Modified

PCP (mod-PCP) program

minimizeL̃new,S̃,X̃
‖L̃new‖∗ + λ‖S̃‖1

subject to L̃new + GX̃∗ + S̃ = M
(1.8)

Denote a solution to the above by L̂new, Ŝ, X̂. Then, L is recovered as L̂ = L̂new +

GX̂∗. Modified-PCP is inspired by an approach for sparse recovery using partial support

knowledge called modified-CS [54].

The third type of problems that we study here are as following. At time t we observe

a data vector mt ∈ Rn that satisfies

mt = `t + xt + wt, for t = ttrain + 1, ttrain + 2, . . . , tmax. (1.9)

For t = 1, 2, . . . , ttrain, xt = 0, i.e., mt = `t + wt. Here `t is a vector that lies in a

low-dimensional subspace that is fixed or slowly changing in such a way that the matrix

Lt := [`1, `2, . . . , `t] is a low-rank matrix for all but very small values of t; xt is a sparse

(outlier) vector; and wt is small modeling error or noise. We use Tt to denote the

support set of xt and we use Pt to denote a basis matrix for the subspace from which `t

is generated. For t > ttrain, the goal of online RPCA is to recursively estimate `t and its

subspace range(Pt), and xt and its support, Tt, as soon as a new data vector mt arrives

or within a short delay 1. Sometimes, e.g., in video analytics, it is often also desirable

to get an improved offline estimate of xt and `t when possible. We show that this is an

easy by-product of our solution approach.

The initial ttrain outlier-free measurements are used to get an accurate estimate of the

initial subspace via PCA. For video surveillance, this assumption corresponds to having

a short initial sequence of background only images, which can often be obtained.

In many applications, it is actually the sparse outlier xt that is the quantity of interest.

The above problem can thus also be interpreted as one of online sparse matrix recovery

1By definition, a subspace of dimension r > 1 cannot be estimated immediately since it needs at
least r data points to estimate
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in large but structured noise `t and unstructured small noise wt. The unstructured noise,

wt, often models the modeling error. For example, when some of the corruptions/outliers

are small enough to not significantly increase the subspace recovery error, these can be

included into wt rather than xt. Another example is when the `t’s form an approximately

low-rank matrix.

1.2 Dissertation Organization

The dissertation is organized as follows. Recursive sparse recovery in bounded noise

and corresponding results are introduced in Chapter 2. Batch sparse recovery in large

and structured noise and corresponding results are discussed in Chapter 3. Recursive

(online) sparse recovery in large and structured noise and bounded noise and correspond

results are demonstrated in Chapter 4. Finally, conclusions are summarized in Chapter

5.
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CHAPTER 2. RECURSIVE SPARSE RECOVERY IN

BOUNDED NOISE

2.1 Related Work And Organization

“Recursive sparse reconstruction” also sometimes refers to homotopy methods, e.g.

[55], whose goal is to use the past reconstructions and homotopy to speed up the current

optimization, but not to achieve accurate recovery from fewer measurements than what

noisy `1 needs. The goals in the above works are quite different from ours.

Iterative support estimation approaches (using the recovered support from the first

iteration for a second weighted `1 step and doing this iteratively) have been studied in

recent work [56, 57, 58, 59]. This is done for iteratively improving the recovery of a single

signal.

This chapter is organized as follows. The algorithms – modified-CS and modified-

CS-add-LS-del – are introduced in Sec 2.2. This section also includes definitions for

certain quantities and sets used later in the paper. In Sec 2.3, we provide stability

results for modified-CS and modified-CS-add-LS-del that do not assume anything about

signal change over time except a bound on the number of small magnitude nonzero

coefficients and a bound on maximum number of support additions or removals per unit

time. In Sec 2.4, we give a simple set of signal change assumptions and give stability

results for both algorithms under these and other simple assumptions. In Sec 2.5, we

do the same for a realistic signal change model. The results are discussed in Sec 2.4.4

and 2.5.4 respectively. In Sec 2.6, we demonstrate that the signal model assumptions of
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Sec 2.5 are indeed valid for medical imaging data. In Sec 4.4, we explain how to set the

algorithm parameters automatically for both modified-CS and modified-CS-add-LS-del.

In this section, we also give simulation experiments that back up some of our discussions

from earlier sections.

2.2 Modified-CS And Modified-CS-add-LS-del For Recursive

Reconstruction

2.2.1 Modified-CS

Modified-CS was first proposed in [14] as a solution to the problem of sparse recon-

struction with partial, and possibly erroneous, knowledge of the support. Denote this

“known” support by T . Modified-CS tries to find a signal that is sparsest outside of

the set T among all signals satisfying the data constraint. In the noisy case, it solves

minβ ‖(β)T c‖1 s.t. ‖yt − Aβ‖ ≤ ε. For recursively reconstructing a time sequence of

sparse signals, we use the support estimate from the previous time, N̂t−1, as the set T .

The simplest way to estimate the support is by thresholding the output of modified-CS.

We summarize the complete algorithm in Algorithm 1.

At the initial time, t = 0, we let T be the empty set, ∅, i.e. we solve noisy `1.

Alternatively, as explained in [14], we can use prior knowledge of the initial signal’s

support as the set T at t = 0, e.g. for wavelet sparse images with no (or a small) black

background, the set of indices of the approximation coefficients can form the set T . This

prior knowledge is usually not as accurate.

We explain how the parameter α can be set in practice in Sec 2.7.1.

2.2.2 Limitation: biased solution

Modified-CS uses single step thresholding for estimating the support N̂t. The thresh-

old, α, needs to be large enough to ensure that all (or most) removed elements are



www.manaraa.com

15

Algorithm 1 Modified-CS

For t ≥ 0, do

1. Noisy `1. If t = 0, set Tt = ∅ and compute x̂t,modcs as the solution of

min
β
‖(β)‖1 s.t. ‖y0 −A0β‖ ≤ ε (2.1)

2. Modified-CS. If t > 0, set Tt = N̂t−1 and compute x̂t,modcs as the solution of

min
β
‖(β)T ct ‖1 s.t. ‖yt −Atβ‖ ≤ ε (2.2)

3. Estimate the Support. Compute T̃t as

T̃t = {i ∈ [1,m] : |(x̂t,modcs)i| > α} (2.3)

4. Set N̂t = T̃t. Output x̂t,modcs. Feedback N̂t.

correctly deleted and there are no (or very few) false detections. But this means that

the new additions to the support set will either have to be added at a large value, or

their magnitude will need to increase to a large value quickly enough to ensure correct

detection within a small delay. This issue is further exaggerated by the fact that x̂t,modcs

is a biased estimate of xt. Along T ct , the values of x̂t,modcs will be biased toward zero

(because we minimize ‖(β)T ct ‖1), while, along Tt, they may be biased away from zero.

This will create the following problem. The set Tt contains the set ∆e,t which needs to

be deleted. Since the estimates along ∆e,t may be biased away from zero, one will need a

higher threshold to delete them. But that would make detection more difficult, especially

since the estimates along ∆t ⊆ T ct will be biased towards zero. A similar issue for noisy

CS, and a possible solution (Gauss-Dantzig selector), was first discussed in [52].

2.2.3 Modified-CS with Add-LS-Del

The bias issue can be partly addressed by replacing the support estimation step

of Modified-CS by a three step Add-LS-Del procedure summarized in Algorithm 2. It
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involves a support addition step (that uses a smaller threshold - αadd), as in (2.4), followed

by LS estimation on the new support estimate, Tadd,t, as in (2.5), and then a deletion

step that thresholds the LS estimate, as in (2.6). This can be followed by a second LS

estimation using the final support estimate, as in (2.7), although this last step is not

critical. The addition step threshold, αadd, needs to be just large enough to ensure that

the matrix used for LS estimation, ATadd,t
is well-conditioned. If αadd is chosen properly

and if n is large enough, the LS estimate on Tadd,t will have smaller error and will be less

biased than the modified-CS output. As a result, deletion will be more accurate when

done using this estimate. This also means that one can use a larger deletion threshold,

αdel, which will ensure quicker deletion of extras.

Related ideas were introduced in our older work [1, 13] for KF-CS and LS-CS, and

in [60, 49] for a greedy algorithm for static sparse reconstruction.

We explain how to automatically set the parameters for both modified-CS-add-LS-del

and modified-CS in Sec 2.7.1.

2.2.4 Some definitions

Definition 2.2.1. For any matrix, A, the left S-restricted isometry constant (left-RIC)

δS,left(A) and right S-restricted isometry constant (right-RIC) δS,right(A) are the smallest

real numbers satisfying

(1− δS,left(A))‖c‖2 ≤ ‖AT c‖2 ≤ (1 + δS,right(A))‖c‖2 (2.8)

for all sets T ⊂ [1,m] of cardinality |T | ≤ S and all real vectors c of length |T |. The

restricted isometry constant (RIC)[10] is the larger of the two, i.e.,

δS = max{δS,left(A), δS,right(A)}.

Definition 2.2.2. The restricted orthogonality constant (ROC) [10], θS1,S2(A), is the

smallest real number satisfying

|c1
′AT1

′AT2c2| ≤ θS1,S2‖c1‖ ‖c2‖ (2.9)
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Algorithm 2 Modified-CS-Add-LS-Del

For t ≥ 0, do

1. Noisy `1. If t = 0, set Tt = ∅ and compute x̂t,modcs as the solution of (2.1).

2. Modified-CS. If t > 0, set Tt = N̂t−1 and compute x̂t,modcs as the solution of (2.2).

3. Additions / LS. Compute Tadd,t and the LS estimate using it:

Ât ={i : |(x̂t,modcs)i| > αadd}
Tadd,t =Tt ∪ Ât (2.4)

(x̂t,add)Tadd,t
=ATadd,t

†yt, (x̂t,add)T cadd,t
= 0 (2.5)

4. Deletions / LS. Compute T̃t and LS estimate using it:

R̂t ={i ∈ Tadd,t : |(x̂t,add)i| ≤ αdel}
T̃t =Tadd,t \ R̂t (2.6)

(x̂t)T̃t =AT̃t
†yt, (x̂t)T̃ ct = 0 (2.7)

5. Set N̂t = T̃t. Feedback N̂t. Output x̂t.

for all disjoint sets T1, T2 ⊂ [1,m] with |T1| ≤ S1, |T2| ≤ S2 and S1 + S2 ≤ m, and for

all vectors c1, c2 of length |T1|, |T2| respectively.

In this work, we need the same condition on the RIC and ROC of all measurement

matrices At for t > 0. Thus, in the rest of this paper, we let

δS := max
t>0

δS(At), and θS1,S2 := max
t>0

θS1,S2(At).

If we need the RIC of ROC of any other matrix, then we specify it explicitly.

As seen above, we use α to denote the support estimation threshold used by modified-

CS and we use αadd, αdel to denote the support addition and deletion thresholds used by

modified-CS-add-LS-del. We use N̂t to denote the support estimate at time t.

Definition 2.2.3 (Tt, ∆t, ∆e,t). We use Tt := N̂t−1 to denote the support estimate from

the previous time. This serves as the predicted support at time t. We use ∆t := Nt \ Tt
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to denote the unknown part of support Nt and ∆e,t := Tt \ Nt to denote the “erroneous”

part of support Nt.

With the above definition, clearly, Nt = Tt ∪∆t \∆e,t.

Definition 2.2.4 (T̃t, ∆̃t, ∆̃e,t). We use T̃t := N̂t to denote the final estimate of the

current support; ∆̃t := Nt \ T̃t to denote the “misses” in N̂t and ∆̃e,t := T̃t \Nt to denote

the “extras”.

Definition 2.2.5 (Define Tadd,t,∆add,t,∆e,add,t). The set Tadd,t is the support estimate

obtained after the support addition step in Algorithm 2 (modified-CS-add-LS-del). It is

defined in (2.4). The set ∆add,t := Nt \ Tadd,t denotes the set of missing elements from

Nt and the set ∆e,add,t := Tadd,t \ Nt denotes the set of extras in it.

Remark 2.2.6. At certain places in the paper, we remove the subscript t for ease of

notation.

2.2.5 Modified-CS error bound at time t

By adapting the approach of [12], the error of modified-CS can be bounded as a

function of |Tt| = |Nt| + |∆e,t| − |∆t| and |∆t|. This was done in [61]. We state a

modified version here.

For completeness, we provide a proof for following lemma in Appendix A.0.1.

Lemma 2.2.7 (modified-CS error bound). Assume that yt satisfies (1.2) and the support

of xt is Nt. Consider step 2 of Algorithm 1 or 2. If δ|Tt|+3|∆t| = δ|Nt|+|∆e,t|+2|∆t| <

(
√

2− 1)/2, then

‖xt − x̂t,modcs‖ ≤ C1(|Tt|+ 3|∆t|)ε ≤ 7.50ε, C1(S) ,
4
√

1 + δS
1− 2δS

.
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Notice that the bound by C1(|Tt| + 3|∆t|)ε will hold as long as δ|Tt|+3|∆t| < 1/2. By

enforcing that δ|Tt|+3|∆t| ≤ 1/2c for a c < 1, we ensure that C1(.) is bounded by a fixed

constant. To state the above lemma we pick c =
√

2− 1 and this gives C1(.) = 7.50. We

can state a similar result for CS [12].

Lemma 2.2.8 (CS error bound [12]). Assume that yt satisfies (1.2) and the support of

xt is Nt. Let x̂t,cs denote the solution of (2.2) with Tt = ∅. If δ2|Nt| < (
√

2− 1)/2, then

‖xt − x̂t,cs‖≤C1(2|Nt|)ε ≤ 7.50ε

2.2.6 LS step error bound at time t

We can claim the following about the LS step error in step 3 of Algorithm 2.

Lemma 2.2.9. Assume that yt satisfies (1.2) and the support of xt is Nt. Consider step

3 of Algorithm 2.

1. (xt−x̂t,add)Tadd,t = (ATadd,t
′ATadd,t)

−1[ATadd,t
′wt+ATadd,t

′A∆add,t
(xt)∆add,t

], (xt−x̂t,add)∆add,t
=

(xt)∆add,t
, and (xt − x̂t,add)i = 0, if i /∈ Tadd,t ∪∆add,t.

2. (a) ‖(xt − x̂t,add)Tadd,t‖ ≤ 1√
1−δ|T |

ε+
θ|Tadd,t|,|∆add,t|

1−δ|T | ‖(xt)∆add,t
‖.

(b) ‖(xt − x̂t,add)‖ ≤ 1√
1−δ|T |

ε+ (1 +
θ|Tadd,t|,|∆add,t|

1−δ|T | )‖(xt)∆add,t
‖.

Proof: The first claim follows directly from the expression for x̂t,add. The second

claim uses the first claim and the facts that ||AT †||2 ≤ 1/
√

1− δ|T |, ||(AT ′AT )−1|| ≤

1/(1− δ|T |) and ||AT ∪∆||2 ≤ θ|T |,|∆| [1].
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2.3 Stability Over Time Results Without Signal Value

Change Assumptions

As suggested by an anonymous reviewer, we begin by first stating a stability over

time result for modified-CS and modified-CS-add-LS-del without assuming any model

on how the signal changes. This result is quite general and is applicable to various types

of signal change models. In Sections 2.4 and 2.5, we specialize the proof technique to get

stability results for two sets of signal change assumptions.

2.3.1 Stability over time result for Modified-CS

The following facts are immediate from Algorithm 1.

Proposition 2.3.1 (simple facts). Consider Algorithm 1.

1. An i ∈ Nt will definitely get detected in step 3 if |(xt)i| > α + ‖xt − x̂t,modcs‖∞.

2. Similarly, all i ∈ ∆e,t (the zero elements of Tt) will definitely get deleted in step 3

if α ≥ ‖xt − x̂t,modcs‖∞.

Using the above facts and Lemma 2.2.7 and an induction argument, we get the

following result.

Theorem 2.3.2. Consider Algorithm 1. Assume that the support size of xt is bounded by

S and there are at most Sa additions and removals at all times. Assume that yt satisfies

(1.2). If the following hold

1. (support estimation threshold) set α = 7.50ε,

2. (number of measurements) δS+6Sa ≤ 0.207,

3. (number of small magnitude entries) |Bt| ≤ Sa, where Bt = {i ∈ Nt : |(xt)i| ≤

α + 7.50ε},
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4. (initial time) at t = 0, n0 is large enough to ensure that |∆̃t| = 0, ∆̃e,t = 0.

then for all t,

1. |∆̃t| ≤ Sa, |∆̃e,t| = 0, |T̃t| ≤ S,

2. |∆t| ≤ 2Sa, |Tt| ≤ S, |∆e,t| ≤ Sa,

3. and ‖xt − x̂t‖ ≤ 7.50ε.

The proof is provided in Appendix A.0.2.

2.3.2 Stability over time result for Modified-CS-add-LS-del

A result similar to the one above can also be proved for modified-CS-add-LS-del.

Theorem 2.3.3. Consider Algorithm 2. Assume that the support size of xt is bounded by

S and there are at most Sa additions and removals at all times. Assume that yt satisfies

(1.2). If the following hold

1. (addition and deletion thresholds)

(a) αadd is large enough so that at most f false additions per unit time,

(b) αdel = 1.12ε+ 0.261
√
Sa(αadd + 7.50ε),

2. (number of measurements) δS+6Sa ≤ 0.207, δS+2Sa+f ≤ 0.207,

3. (number of small magnitude entries) |Bt| ≤ Sa, where Bt = {i ∈ Nt : |(xt)i| ≤

max{αadd + 7.50ε, 2αdel}},

4. (initial time) at t = 0, n0 is large enough to ensure that |∆̃t| = 0, ∆̃e,t = 0.

then for all t,

1. |∆̃t| ≤ Sa, ∆̃e,t = 0, |T̃t| ≤ S,
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2. |∆t| ≤ 2Sa, |∆e,t| ≤ Sa, |Tt| ≤ S,

3. |∆add,t| ≤ Sa, |∆e,add,t| ≤ Sa + f , |Tadd,t| ≤ S + Sa + f ,

4. ‖xt − x̂t,modcs‖ ≤ 7.50ε

5. and ‖xt − x̂t‖ ≤ 1.12ε+ 1.261
√

2αdelSa.

Proof is provided in Appendix A.0.3.

2.3.3 Discussion

Notice that the support error bound in both results above is 2Sa. Under slow support

change, Sa � S, this bound is small compared to the support size S, making the result

a meaningful one. Also, the reconstruction error is upper bounded by a constant times

ε. Under a high enough signal-to-noise ratio (SNR), this bound is also small compared

to the signal power.

If f = Sa in Theorem 2.3.3, both Modified-CS and Modified-CS-add-LS-del need

δS+6Sa ≤ 0.207. Consider noisy `1, i.e. (2.1). Since it is not a recursive approach (each

time instant is handled separately), Lemma 2.2.8 is also a stability result for it. From

Lemma 2.2.8, it needs δ2S ≤ 0.207 to get the same error bound. When Sa � S, clearly

it requires a stronger condition than either of the modified-CS algorithms.

Remark 2.3.4. Consider the noise-free case, i.e. the case when ε = 0, yt = Atxt, with

the number of support additions and removals per unit time at most Sa. In this case, our

results say the following: as long as the signal change assumptions hold, δS+kSa < 0.207

is sufficient for both algorithms. It is easy to show that δS+Sa,left < 1 is also necessary

for both algorithms. We give a proof for this in Appendix A.0.8. Thus the sufficient

condition that our results need are of the same order in both S and Sa as the necessary

condition and hence these results cannot be improved much. Thus, for example, RIP of

order S + k
√
Sa or

√
S + kSa will not work. This remark is inspired by a concern of an

anonymous reviewer.
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2.4 Stability Results: Simple But Restrictive Signal Change

Assumptions

In this section, we assume a very simple but restrictive signal change model that

allows for slow nonzero coefficient magnitude increase after a new coefficient is added

and slow decrease in magnitude before a coefficient is removed.

2.4.1 Simple but restrictive signal change assumptions

We use a single parameter, r, for the newly added elements’ magnitude and for the

magnitude increase and decrease rate of all elements at all times. We also fixes the

number of support additions and removals to be Sa.

Model 1. Assume the following.

1. (addition and increase) At each t > 0, Sa new coefficients get added to the support

at magnitude r. Denote this set by At. At each t > 0, the magnitude of Sa

coefficients out of all those which had magnitude (j − 1)r at t − 1 increases to

jr. This occurs for all 2 ≤ j ≤ d. Thus the maximum magnitude reached by any

coefficient is M := dr.

2. (decrease and removal) At each t > 0, the magnitude of Sa coefficients out of all

those which had magnitude (j + 1)r at t − 1 decreases to jr. This occurs for all

1 ≤ j ≤ (d−2). At each t > 0, Sa coefficients out of all those which had magnitude

r at t− 1 get removed from the support (magnitude becomes zero). Denote this set

by Rt.

3. (initial time) At t = 0, the support size is S and it contains 2Sa elements each

with magnitude r, 2r, . . . (d − 1)r, and (S − (2d − 2)Sa) elements with magnitude

M .
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Fig. 2.1 illustrates the above signal change assumptions. To understand its implica-

tions, define the following sets. For 0 ≤ j ≤ d− 1, let

Dt(j) := {i : |xt,i| = jr, |xt−1,i| = (j + 1)r}

denote the set of elements that decrease from (j+ 1)r to jr at time, t. For 1 ≤ j ≤ d, let

It(j) := {i : |xt,i| = jr, |xt−1,i| = (j − 1)r}

denote the set of elements that increase from (j−1)r to jr at time, t. For 1 ≤ j ≤ d−1,

let

St(j) := {i : 0 < |xt,i| < jr}

denote the set of small but nonzero elements, with smallness threshold jr. Clearly, the

newly added set, At = It(1) and the newly removed set, Rt = Dt(0). Also, |It(j)| = Sa,

|Dt(j)| = Sa, |St(j)| = 2(j − 1)Sa.

Consider a 1 < j ≤ d. From Signal Change Assumptions 1, it is clear that at any

time, t, Sa elements enter the small elements’ set, St(j), from the bottom (set At) and

Sa enter from the top (set Dt(j− 1)). Similarly Sa elements leave St(j) from the bottom

(set Rt) and Sa from the top (set It(j)). Thus,

St(j) = St−1(j) ∪ (At ∪ Dt(j − 1)) \ (Rt ∪ It(j)) (2.10)

Since At,Rt,Dt(j − 1), It(j) are mutually disjoint, Rt ⊆ St−1(j) and It(j) ⊆ St−1(j),

thus, (2.10) implies that

St−1(j) ∪ At \ Rt = St(j) ∪ It(j) \ Dt(j − 1) (2.11)

Also, clearly,

Nt =Nt−1 ∪ At \ Rt (2.12)
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dr

dr

Nt+1 \ St+1,
|Nt+1 \ St+1| ≥ S − (2d− 2)Sa

2r

2r

It+1(2) ∪ Dt+1(2),
|It+1(2)| = |Dt+1(2)| = Sa

r

r

It+1(1) ∪ Dt+1(1),
|It+1(1)| = |Dt+1(1)| = Sa

0

0

N c
t+1,
|N c

t+1| = m− S

dr

dr

Nt \ St,
|Nt \ St| = S − (2d− 2)Sa

2r

2r

It(2) ∪ Dt(2),
|It(2) ∪ Dt(2)| = Sa

r

r

It(1) ∪ Dt(1),
|It(1) ∪ Dt(1)| = Sa

0

0

N c
t ,

|N c
t | = m− S

xt xt+1

Nt Nt+1

m− S − Sa
Sa

S
a

Sa

S
a

Sa

S − (2d− 1)Sa
S
a

Figure 2.1: Signal Change Assumptions 1 (Values inside rectangular denote magnitudes.)
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2.4.2 Stability result for modified-CS

The first step is to find sufficient conditions for a certain set of large coefficients to

definitely get detected, and for the elements of ∆e to definitely get deleted. These are

obtained in Lemma 2.4.2 by using Lemma 2.2.7 and the following simple facts. Next, we

use Lemma 2.4.2 to ensure that all new additions to the support get detected within a

finite delay, and all removals from the support get deleted immediately.

In general, for any vector z, ‖z‖∞ ≤ ‖z‖ with equality holding only if z is one-sparse

(exactly one element of z is nonzero). If the energy of z is more spread out, ‖z‖∞ will

be smaller than ‖z‖. Typically the error xt − x̂t,modcs will not be one-sparse, but will be

more spread out. The assumption below states this.

Assumption 2.4.1. Consider Algorithm 1. Assume that the Modified-CS reconstruction

error is spread out enough so that

‖xt − x̂t,modcs‖∞ ≤
ζM√
Sa
‖xt − x̂t,modcs‖

for some ζM ≤
√
Sa.

Combining Proposition 2.3.1 and the above assumption with Lemma 2.2.7, we get

the following lemma.

Lemma 2.4.2. Consider Algorithm 1. Assume Assumption 2.4.1. Assume that |Nt| =

SNt, |∆e,t| ≤ S∆e,t and |∆t| ≤ S∆t.

1. All elements of the set {i ∈ Nt : |(xt)i| ≥ b1} will get detected in step 3 if

• δSNt+S∆e,t+2S∆t
≤ 0.207, and b1 > α + ζM√

Sa
7.50ε.

2. In step 3, there will be no false additions, and all the true removals from the support

(the set ∆e,t) will get deleted at the current time, if

• δSNt+S∆e,t+2S∆t
≤ 0.207, and α ≥ ζM√

Sa
7.50ε.
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We use the above lemma to obtain sufficient conditions to ensure the following: for

some d0 ≤ d, at all times, t, (i) only coefficients with magnitude less than d0r are part

of the final set of misses, ∆̃t and (ii) the final set of extras, ∆̃e,t, is an empty set. In

other words, we find conditions to ensure that ∆̃t ⊆ St(d0) and |∆̃e,t| = 0. Using Signal

Change Assumptions 1, |St(d0)| = 2(d0 − 1)Sa and thus ∆̃t ⊆ St(d0) will imply that

|∆̃t| ≤ 2(d0 − 1)Sa.

Theorem 2.4.3 (Stability of modified-CS). Consider Algorithm 1. Assume Signal

Change Assumptions 1 on xt. Also assume that yt satisfies (1.2). Assume that As-

sumption 2.4.1 holds. If, for some d0 ≤ d, the following hold

1. (support estimation threshold) set α = ζM√
Sa

7.50ε

2. (number of measurements) δS+(2k1+1)Sa ≤ 0.207,

3. (new element increase rate) r ≥ G, where

G,
α + ζM√

Sa
7.50ε

d0

ε (2.13)

4. (initial time) at t = 0, n0 is large enough to ensure that ∆̃0 ⊆ S0(d0), |∆̃0| ≤

2(d0 − 1)Sa, |∆̃e,0| = 0 and |T̃0| ≤ S

where

k1 ,max(1, 2d0 − 2) (2.14)

then,

1. at all t ≥ 0, |T̃t| ≤ S, |∆̃e,t| = 0, ∆̃t ⊆ St(d0) and so |∆̃t| ≤ 2(d0 − 1)Sa,

2. at all t > 0, |Tt| ≤ S, |∆e,t| ≤ Sa, and |∆t| ≤ k1Sa,

3. at all t > 0, ‖xt − x̂t,modcs‖ ≤ 7.50ε
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Proof: The proof is given in Appendix A.0.4. It follows using induction.

Remark 2.4.4. The condition 4 is not restrictive. It is easy to see that this will hold if

n0 is large enough to ensure that δ2S(A0) ≤ 0.207.

2.4.3 Stability result for Modified-CS with Add-LS-Del

The first step to show stability is to find sufficient conditions for (a) a certain set of

large coefficients to definitely get detected, and (b) to definitely not get falsely deleted,

and (c) for the zero coefficients in Tadd to definitely get deleted. These can be obtained

using Lemma 2.2.7 and simple facts similar to Proposition 2.3.1.

As explained before, we can assume that the modified-CS reconstruction error is not

one-sparse but is more spread out. The same assumption should also be valid for the LS

step error. We state these next.

Assumption 2.4.5. Consider Algorithm 2. Assume that the Modified-CS reconstruction

error is spread out enough so that Assumption 2.4.1 holds and assume that the LS step

error along Tadd,t is spread out enough so that

‖(xt − x̂add,t)Tadd,t‖∞ ≤
ζL√
Sa
‖(xt − x̂add,t)Tadd,t‖

at all times, t, for some ζL ≤
√
Sa.

Combining the above assumption with Lemmas 2.2.7 and 2.2.9, we get the following

lemmas.

Lemma 2.4.6 (Detection condition). Consider Algorithm 2. Assume Assumption 2.4.5.

Assume that |Nt| = SNt, |∆e,t| ≤ S∆e,t, |∆t| ≤ S∆t. Pick a b1 > 0. All elements of the

set {i ∈ ∆ : |(xt)i| ≥ b1} will get detected in step 3 if

• δSNt+S∆e,t+2S∆t
≤ 0.207, and b1 > αadd + ζM√

Sa
7.50ε.
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Lemma 2.4.7 (Deletion and No false-deletion condition). Consider Algorithm 2. As-

sume Assumption 2.4.5. Assume that |Tadd,t| ≤ STadd,t and |∆add,t| ≤ S∆add,t
.

1. Pick a b1 > 0. No element of the set {i ∈ Tadd,t : |(xt)i| ≥ b1} will get (falsely)

deleted in step 4 if

• δSTadd,t < 1/2 and b1 > αdel + ζL√
Sa

(
√

2ε+ 2θSTadd,t ,S∆add,t
‖(xt)∆add,t

‖).

2. All elements of ∆e,add will get deleted in step 4 if

• δSTadd,t < 1/2 and αdel ≥ ζL√
Sa

(
√

2ε+ 2θSTadd,t ,S∆add,t
‖(xt)∆add,t

‖).

Using the above lemmas, we can obtain sufficient conditions to ensure that, for some

d0 ≤ d, at each time t, ∆̃t ⊆ St(d0) (so that |∆̃t| ≤ (2d0 − 2)Sa) and |∆̃e,t| = 0.

Theorem 2.4.8 (Stability of modified-CS with add-LS-del). Consider Algorithm 2. As-

sume Signal Change Assumptions 1 on xt. Also assume that yt satisfies (1.2). Assume

that Assumption 2.4.5 holds. If, for some 1 ≤ d0 ≤ d, the following hold

1. (addition and deletion thresholds)

(a) αadd is large enough so that there are at most f false additions per unit time,

(b) αdel =
√

2
Sa
ζLε+ 2k3θS+Sa+f,k2SaζLr,

2. (number of measurements)

(a) δS+Sa(1+2k1) ≤ 0.207,

(b) δS+Sa+f < 1/2,

(c) θS+Sa+f,k2Sa <
1
2

d0

4k3ζL
,

3. (new element increase rate) r ≥ max(G1, G2), where

G1 ,
αadd + ζM√

Sa
7.50ε

d0

G2 ,
2
√

2ζLε√
Sa(d0 − 4k3θS+Sa+f,k2SaζL)

(2.15)
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4. (initial time) n0 is large enough to ensure that ∆̃0 ⊆ S0(d0), |∆̃0| ≤ (2d0 − 2)Sa,

|∆̃e,0| = 0, |T̃0| ≤ S,

where

k1 ,max(1, 2d0 − 2)

k2 ,max(0, 2d0 − 3)

k3 ,

√√√√d0−1∑
j=1

j2 +

d0−2∑
j=1

j2 (2.16)

then, at all t ≥ 0,

1. |T̃t| ≤ S, |∆̃e,t| = 0, and ∆̃t ⊆ St(d0) and so |∆̃t| ≤ (2d0 − 2)Sa,

2. |Tt| ≤ S, |∆e,t| ≤ Sa, and |∆t| ≤ k1Sa,

3. |Tadd,t| ≤ S + Sa + f , |∆e,add,t| ≤ Sa + f , and |∆add,t| ≤ k2Sa,

4. ‖xt − x̂t,modcs‖ ≤ C1(S + Sa + 2k1Sa)ε ≤ 7.50ε,

5. ‖xt − x̂t‖ ≤ 1.261k3

√
Sar + 1.12ε.

Proof: The proof is given in Appendix A.0.5.

2.4.4 Discussion

Notice that, with Signal Change Assumptions 1, at all times, t, the signals have the

same support set size, |Nt| = S and the same signal power, ‖xt‖2 = (S−(2d−2)Sa)M
2 +

2Sa
∑d−1

j=1 j
2r2. As in the previous section, here again the support error bound in both

results above is proportional to Sa. Under slow support change, this means that the

support error is small compared to the support size. To make the comparison of the

above two results simpler, let us fix d0 = 2 and let f = Sa in Theorem 2.4.8. Consider

the conditions on the number of measurements. Modified-CS needs δS+5Sa ≤ 0.207.
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Modified-CS-add-LS-del needs δS+5Sa ≤ 0.207; δS+2Sa < 0.5 (this is implied by the first

condition) and θS+2Sa,Sa ≤ 1
4ζL

. Since θS+2Sa,Sa ≤ δS+3Sa , the third condition is also

implied by the first as long as ζL ≤ 1.2. In simulation tests (described in Sec 2.5.4) we

observed that this was usually true. Then, both modified-CS and modified-CS-add-LS-

del need the same condition on the number of measurements: δS+5Sa ≤ 0.207. Consider

noisy `1 i.e. (2.1). As explained earlier, Lemma 2.2.8 serves as a stability result for

it. From Lemma 2.2.8, iy needs δ2S ≤ 0.207 to get the same error bound which is

significantly stronger when Sa � S.

Let us compare the requirement on r. In Theorem 2.4.8 for modified-cs-add-ls-del,

since θS+Sa+f,k2Sa ≤ 1
2

d0

4k3ζL
, so G2 ≤ 4

√
2ζL√
Sad0

ε < 5.7ε
d0

< 7.50ε
d0

< G1 and thus G1 is what

decides the minimum allowed value of r. Thus, it needs r ≥ G1 = 1
d0

[αadd + ζM√
Sa

7.50ε].

On the other hand, modified-CS needs r ≥ G = 1
d0

[2 ζM√
Sa

7.50ε]. If αadd is close to zero,

this means that the minimum magnitude increase rate, r, required by Theorem 2.4.8 is

almost half of that required by Theorem 2.4.3. In our simulation experiments, αadd was

typically quite small: it was usually close to a small constant times ε/
√
n (see Sec 4.4).

Remark 2.4.9. From the above results, observe that, if the rate of magnitude change,

r, is smaller, r ≥ G1 or r ≥ G will hold for a larger value of d0. This means that the

support error bound, (2d0 − 2)Sa, will be larger. This, in turn, decides what conditions

on the RIC and ROC are needed (in other words, how many measurements, nt, needed).

Smaller r means a larger d0 is needed which, in turn, means that stronger conditions on

the RIC and ROC (larger nt) are needed. Thus, for a given nt = n, as r is reduced, the

algorithm will stabilize to larger and larger support error levels (larger d0) and finally

become unstable (because the given n does not satisfy the conditions on δ, θ for the larger

d0).
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2.5 Stability Results: Realistic Signal Change Assumptions

We introduce the signal change assumptions in the next subsection and then give the

results in the following two subsections. The discussion of the results and a comparison

with the results of LS-CS [1] is provided in the two subsequent subsections.

2.5.1 Realistic signal change assumptions

Briefly, we assume the following. At any time the signal vector xt is a sparse vector

with support set Nt of size S or less. At most Sa elements get added to the support

at each time t and at most Sa elements get removed from it. At time t = tj, a new

element j gets added at an initial magnitude aj, and its magnitude increases for the next

dj ≥ dmin time units. Its magnitude increase at time τ (for any tj < τ ≤ tj + dj is rj,τ .

Also, at each time t, at most Sa elements out of the “large elements” set (defined in the

signal model) leave the set and begin to decrease. These elements keep decreasing and

get removed from the support in at most b time units. In the model as stated above,

we are implicitly allowing an element j to get added to the support at most once. In

general, j can get added, then removed and then added again. To allow for this, we let

tj be the set of time instants at which j gets added; we replace aj by aj,t and we replace

dj by dj,t (both of which are nonzero only for t ∈ tj).

As demonstrated in Section 2.6, the above assumptions are practically valid for MRI

sequences.

Model 2. Assume the following.

1. At the initial time, t = 0, the support set, N0, contains S0 nonzero elements, i.e.

|N0| = S0.

2. At time t, Sa,t elements are added to the support set. Denote this set by At. At

time t, a new element j gets added to the support at an initial magnitude aj,t and
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its magnitude increases for at least the next dmin > 0 time instants. At time τ (for

t < τ ≤ t+ dmin), the magnitude of element j increases by rj,τ ≥ 0.

• aj,t is nonzero only if element j got added at time t, for all other times, we

set it to zero.

3. We define the “large set” as

Lt := {j /∈ ∪tτ=t−dmin+1Aτ : |(xt)j| ≥ `},

for a given constant `. Elements in Lt−1 either remain in Lt (while increasing or

decreasing or remaining constant) or decrease enough to leave Lt.

4. At time t, Sd,t elements out of Lt−1 decrease enough to leave Lt−1. Denote this set

Bt. All these elements continue to keep decreasing and become zero (removed from

support) within at most b time units. Also, at time t, Sr,t elements out of these

decreasing elements are removed from the support. Denote this set by Rt.

5. At all times t, 0 ≤ Sa,t ≤ Sa, 0 ≤ Sd,t ≤ min{Sa, |Lt−1|}, 0 ≤ Sr,t ≤ Sa and the

support size, St := |Nt| ≤ S for constants S and Sa such that S + Sa ≤ m.

Fig.2.2 illustrates the above assumptions. We should reiterate that the above is not

a generative model. It is only a set of assumptions on signal change. One possible

generative model that satisfies these assumptions is given in Appendix A.0.9.

Remark 2.5.1. It is easy to see that Signal Change Assumptions 1 are a special case of

Signal Change Assumptions 2 with aj,t = rj,t = r, dmin = d, b = d, S0 = S, Sa,t = Sd,t =

Sr,t = Sa, ` = dr.

From the above assumptions, the newly added elements’ set At := Nt \ Nt−1; the

newly removed elements’ set Rt := Nt−1 \ Nt; the set of elements that begin to start
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≥ `

≥ `

Lt+1,
|Lt+1| ≥ S0 − ( b+1

2
+ d0)Sa

> 0

> 0

Nt+1 \ Lt+1,
|Nt+1 \ Lt+1| ≤ ( b+1

2
+ d0)Sa

0

0

N c
t+1, |N c

t+1| = m− St+1

≥ `

≥ `

Lt,
|Lt| ≥ S0 − ( b+1

2
+ d0)Sa

> 0

> 0

Nt \ Lt,
|Nt \ Lt| ≤ ( b+1

2
+ d0)Sa

0

0

N c
t , |N c

t | = m− St

xt xt+1

Nt Nt+1

m− St − Sa,t+1

Sa,t
+1

|Lt| − Sd,t+1
Sd,t+1

Figure 2.2: Signal Change Assumptions 2 (Values inside rectangular denote magnitudes.)
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decreasing at t, Bt := Lt−1 \ Lt. Define the following sets: the set of increasing (actually

non-decreasing) elements at t,

It := {j ∈ Nt : |(xt)j| ≥ |(xt−1)j|};

and the set of small and decreasing elements,

SDt := Lct ∩ |{i ∈ Nt : 0 < |(xt)i| < |(xt−1)i|}|.

Notice that It also includes j if its magnitude does not change from t− 1 to t.

Condition 2 of the above model implies that (i) |At| = Sa,t; (ii) if j ∈ At−t0 (i.e.

if j is added at t − t0) for a t0 ≤ dmin, then |(xt)j| = aj,t−t0 +
∑t

τ=t−t0+1 rj,τ ; and (iii)

At ⊆ It ∩ It+1 · · · ∩ It+dmin
(all newly added elements increase for at least dmin time

instants).

Condition 3 implies that Lt−1 ⊆ Lt∪SDt. It also implies that (∪tτ=t−dmin+1Aτ )∩Lt =

∅. This, along with condition 2 means that ∪tτ=t−dmin
Aτ ⊆ It.

Condition 4 implies that |Bt| = Sd,t; Lt−1 \ Bt ⊆ Lt; SDt = SDt−1 ∪ Bt \ Rt;∑t
τ=1 Sr,τ ≥

∑t−b
τ=1 Sd,τ ; |SDt| ≤

∑t
τ=t−b+1 Sd,τ ; and |Rt| = Sr,t.

Condition 5, along with the above, implies that |SDt| ≤ bSa.

Finally, it is easy to see that Nt = It ∪ Lt ∪ SDt. The sets It, Lt are not disjoint,

but both are disjoint with SDt.

The above model tells us the following. Consider an element j that got added at

time t, i.e. j ∈ At. At τ = t, t + 1, ...t + dmin − 1, j ∈ Iτ and j /∈ Lτ . At τ = t + dmin,

j ∈ Iτ ; if |(xτ )j| ≥ ` then j ∈ Lτ as well. For τ > t + dmin, what happens depends on

τ − 1. If j ∈ Lτ−1, then either j ∈ Lτ or it decreases enough to enter the small and

decreasing set, i.e. j ∈ Bτ ⊆ SDτ . If j ∈ SDτ−1, then either it keeps decreasing or gets

removed, i.e. either j ∈ SDτ or j ∈ Rτ ⊆ N c
τ . If j ∈ Lcτ−1 ∩ Iτ−1, then, if |(xτ )j| ≥ `

then j ∈ Lτ ∩ Iτ , else j ∈ Lcτ ∩ Iτ .

We now discuss sufficient conditions for condition 5 of the signal model to hold.
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Remark 2.5.2. Since St = St−1 +Sa,t−Sr,t = S0 +
∑t

τ=1 Sa,τ −
∑t

τ=1 Sr,τ , thus, St ≤ S

holds if S0 ≤ S and
∑t

τ=1 Sa,τ ≤
∑t−b

τ=1 Sd,τ .

Notice that an element j could get added, then removed and added again later. Let

tj := {t : aj,t 6= 0}

denote the set of time instants at which j gets added. Clearly, tj = ∅ if j never got

added. Let

amin := min
j:tj 6=∅

min
t∈tj,t6=0

aj,t

denote the minimum of aj,t over all elements j that got added at t > 0. We are excluding

coefficients that never got added and those that got added at t = 0. Let

rmin(d) := min
j:tj 6=∅

min
t∈tj,t6=0

min
τ∈[t+1,t+d]

rj,τ

denote the minimum, over all elements j that got added at t > 0, of the minimum of rj,τ

over the first d time instants after j got added.

Define

` := amin + dminrmin(dmin). (2.17)

With ` defined this way, clearly, Nt = (∪tτ=t−dmin+1Aτ ) ∪ Lt ∪ SDt where the three sets

are mutually disjoint.

Also, with ` as above, it is clear that for t > dmin, Lt = Lt−1 ∪ At−dmin−1 \ Bt, and

for t ≤ dmin, Lt = Lt−1 \ Bt. Here, by definition, Lt−1 and At−dmin−1 are disjoint and

Bt ⊆ Lt−1. Thus,

|Lt| = |L0|+
t−dmin∑
τ=1

Sa,τ −
t∑

τ=1

Sd,τ

Also notice that |L0| ≤ S0. Using these facts and Remark 2.5.2, we can conclude the

following.

Remark 2.5.3. Let ` := amin + dminrmin(dmin). Then, condition 5 of Signal Change

Assumptions 2 holds if
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1. 0 ≤ Sa,t ≤ Sa and 0 ≤ Sd,t ≤ Sa,

2. (dmin + b+ 1)Sa ≤ |L0| ≤ S0 ≤ S, and

3.
∑t

τ=1 Sa,τ ≤
∑t−b

τ=1 Sd,τ ≤ |L0|+
∑t−b−dmin−1

τ=1 Sa,τ .

The leftmost lower bound of the second condition ensures that the upper bound of the third

condition is not smaller than the lower bound. The upper bound of the third condition

ensures that Sd,t ≤ |Lt−1| always (it is actually written to ensure Sd,t−b ≤ |Lt−b−1|).

S0 ≤ S and the lower bound of the third condition ensures that St ≤ S (as explained in

Remark 2.5.2).

A simpler sufficient condition is as follows.

Remark 2.5.4. Let ` := amin + dminrmin(dmin). Then, condition 5 of Signal Change

Assumptions 2 holds if (dmin + b + 1)Sa ≤ |L0| ≤ S0 ≤ S; Sd,t = Sa for all t; and for

1 ≤ t ≤ b, Sa,t = 0, and for t > b, Sa,t = Sa.

In the above model, we only assume that all coefficients will get removed in at most b

time units. However, it can happen that some coefficients get removed earlier than that

and hence it is fair to include this in the signal model. We do this below.

Model 3. Assume Signal Change Assumptions 2 with the following extra assumption.

• Out of the Sd,t elements that started decreasing at time t, at least τ
b
Sd,t of them get

removed by t+ τ for τ < b.

All implications of the above model are the same as those of Signal Change Assump-

tions 2, except that now, |SDt| ≤ Sd,t+
b−1
b
Sd,t−1 + . . . 1

b
Sd,t−b+1 ≤ b+1

2
Sa; while for Signal

Change Assumptions 2, |SDt| ≤ bSa.
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2.5.2 Modified-CS stability result

For the above signal model, we can claim the following.

Theorem 2.5.5. Consider Algorithm 1. Assume Signal Change Assumptions 3 on xt.

Also assume that yt satisfies (1.2). Assume that Assumption 2.4.1 holds. If there exists

a d0 ≤ dmin such that the following hold:

1. algorithm parameters

(a) α = ζM√
Sa

7.50ε,

2. number of measurements

(a) δ
S+3(

(b+1)
2

+d0+1)Sa
≤ 0.207,

3. initial magnitude and magnitude increase rate:

min{`, min
j:tj 6=∅

min
t∈tj

(aj,t +

t+d0∑
τ=t+1

rj,τ )}

> α +
ζM√
Sa

7.50ε,

4. at t = 0, n0 is large enough to ensure that |∆̃t| ≤ b+1
2
Sa + d0Sa, |∆̃e,t| = 0,

then, for all t,

1. |∆̃t| ≤ (b+1)
2
Sa + d0Sa, |∆̃e,t| = 0, |T̃t| ≤ S,

2. |∆t| ≤ (b+1)
2
Sa + d0Sa + Sa, |Tt| ≤ S, |∆e,t| ≤ Sa,

3. and ‖xt − x̂t‖ ≤ 7.50ε

Proof: See Appendix A.0.6.

Corollary 2.5.6. Under Signal Change Assumptions 2, the result of Theorem 2.5.5

changes in the following way: replace (b+1)
2
Sa by bSa everywhere in the result.
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Remark 2.5.7. Condition 4 of the above result is not restrictive. It is easy to see that

it will hold if δ2S(A0) ≤ 0.207 and if |L0| ≥ [S0 − ( (b+1)
2
Sa + d0Sa)].

Remark 2.5.8. A simpler sufficient condition for condition 3 is: min(`, amin+d0rmin(d0)) >

α + ζM√
Sa

7.50ε.

2.5.3 Modified-CS-Add-LS-Del stability result

Finally we study Modified-CS-Add-LS-Del.

Theorem 2.5.9. Consider Algorithm 2. Assume Signal Change Assumptions 3 on xt.

Also assume that yt satisfies (1.2). Assume that Assumption 2.4.5 holds. If there exists

a d0 ≤ dmin such that the following hold:

1. algorithm parameters

(a) αadd is large enough so that there are at most f false adds at time t, i.e.

|Ât \ Nt| ≤ f

(b) αdel = 1.12 ζL√
Sa
ε+ 0.261ζLh, where h2 = ( (b+1)

2
+ d0)(αadd + ζM√

Sa
7.50ε)2

2. number of measurements

(a) δ
S+3(

(b+1)
2

Sa+d0Sa+Sa)
≤ 0.207

(b) δS+Sa+f ≤ 0.207

(c) θ
S+Sa+f,

(b+1)
2

Sa+d0Sa
≤ 0.207

3. initial magnitude and magnitude increase rate:

min{`, min
j:tj 6=∅

min
t∈tj

(aj,t +

t+d0∑
τ=t+1

rj,τ )}

> max{αadd +
ζM√
Sa

7.50ε, 2αdel} (2.18)

4. at t = 0, n0 is large enough to ensure that |∆̃t| ≤ b+1
2
Sa + d0Sa, |∆̃e,t| = 0,
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then

1. ∆̃t ⊆ SDt ∪ At ∪ At−1 . . .At−d0+1

2. |∆̃t| ≤ (b+1)
2
Sa + d0Sa, |∆̃e,t| = 0, |T̃t| ≤ S

3. |∆t| ≤ (b+1)
2
Sa + d0Sa + Sa, |Tt| ≤ S

4. ‖xt − x̂t,modcs‖ ≤ 7.50ε,

5. ‖xt − x̂t‖ ≤ 1.12ε+ 1.261
√

( (b+1)
2

+ d0)(αdel + 7.50ε)Sa.

Proof: See Appendix A.0.7.

Remark 2.5.10. Claims similar to Corollary 2.5.6 and Remarks 2.5.7 and 2.5.8 hold

for the above result also.

2.5.4 Discussion

Remark 2.5.11. Notice that Signal Change Assumptions 2 or 3 allow for both slow

and fast signal magnitude increase or decrease. Slow magnitude increase/decrease would

happen, for example, in an imaging problem when one object slowly morphs into another

with gradual intensity changes. Or, in case of brain regions becoming “active” in response

to stimuli, the activity level gradually increases from zero to a certain maximum value

within a few milliseconds (10-12 frames of fMRI data), and similarly the “activity” level

decays to zero within a few milliseconds. In both of the above examples, a new coefficient

will get added to the support at time t at a small magnitude aj,t and increase by rj,τ

per unit time for sometime after that. Similarly for the decay to zero of the brain’s

activity level. On the other hand, the signal model also allows support changes resulting

from motion of objects, e.g. translation. In this case, the signal magnitude changes will

typically not be slow. As the object moves, a set of new pixels enter the support and

another set leave. The entering pixels may have large enough pixel intensity and their
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intensity may never change. For our model this means that the pixel enters the support

at a large enough initial magnitude aj,t but its magnitude never changes i.e. rj,τ = 0 for

all τ . If all pixels exit the support without their magnitude first decreasing, then b = 1.

The only thing that the above results (Theorem 2.5.5 and 2.5.9) require is that (i)

for any element j that is added, either aj,t is large enough or rj,τ is large enough for the

initial few (d0) time instants so that condition 3 holds; and (ii) a decaying coefficient

decays to zero within a short delay, b. (i) ensures that every newly added support ele-

ment gets detected either immediately or within a finite delay; while (ii) ensures removal

within finite delay of a decreasing element. For the moving object case, this translates

to requiring that aj,t be large enough. For the first two examples above, this translates to

requiring that rj,τ be large enough for the first few time instants after j gets added and

that b be small enough.

Recall that δS := maxt>0 δS(At). Other than the above assumption, the results also

need that the support estimation thresholds are set appropriately; enough number of mea-

surements, nt, are available at all times t > 0 so that condition 2 holds (this number

depends on the support size, S, the support change size, Sa and on b); and condition 4

holds.

For the above results, the support errors are bounded by a constant times Sa. Thus,

under slow support change, the bound is small compared to the support size, St, making

the above a meaningful result. The reconstruction error is bounded by a constant times

ε. Under high enough SNR, this bound is small compared to the signal power. In fact,

for Signal Change Assumptions 2 or 3, the signal power is not bounded. To compare

the results, let us fix some of the parameters. Suppose that b = 3, f = Sa, S0 = S,

Sa,t = Sr,t = Sd,t = Sa. Let d0 = 2. The modified-CS result says the following. If

1. δS+15Sa ≤ 0.207, and

2. LHS of condition 3 > ζM√
Sa

15ε,
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then |∆̃t| ≤ 4Sa and |∆̃e,t| = 0 and ‖xt− x̂t,modcs‖ ≤ 7.50ε. The Modified-CS-add-LS-del

result says the following. If

1. δS+15Sa ≤ 0.207(the other two conditions are implied by this), and

2. LHS of condition 3 > max(αadd + ζM√
Sa

7.50ε, 2.24 ζL√
Sa
ε + 0.522ζLh), where h2 =

4(αadd + ζM√
Sa

7.50ε)2.

then |∆̃t| ≤ 4Sa and |∆̃e,t| = 0 and ‖xt − x̂t,modcs‖ ≤ 7.50ε.

The CS result from Lemma 2.2.8 says the following. If

1. δ2S ≤ 0.207

then ‖xt − x̂t,cs‖ ≤ 7.50ε.

Thus, both modified-CS and modified-CS-add-LS-del need the same restricted isom-

etry condition (condition on the number of measurements). Under the slow support

change assumption, Sa � St ≤ S. In this case, both the modified-CS algorithms hold

under a weaker restricted isometry condition (potentially fewer number of measurements

required) than what noisy `1 needs for the same error bound. Next we compare the lower

bounds on the LHS of condition 3 needed by modified-CS and by modified-CS-add-LS-

del. This requires knowing ζM and ζL. To get an idea of the values of ζM and ζL, we did

simulations based on Signal Change Assumptions 2 with S = 0.1m,Sa,t = Sd,t = Sr,t =

Sa = 0.01m, b = dmin = 3, rj,t = 1, aj,t = 1 (we generated it using the generative model

given in Appendix A of [30]). The measurement matrices At were zero mean random

Gaussian nt ×m matrices with columns normalized to unit norm. For t = 0, n0 = 160;

for t > 0, nt = n = 57. The measurement noise, (wt)j ∼i.i.d. uniform(−ct, ct) for

1 ≤ j ≤ m. For t = 0, ct = 0.01266; for t > 0, ct = 0.1266. We used the same measure-

ment Gaussian matrix A for t > 0. We generated 500 realizations respectively with dif-

ferent choices of m, and used both algorithms for reconstruction. When m = 200, we got,

ζM = 0.9328
√
Sa, ζL = 0.8734

√
Sa; when m = 1000, ζM = 0.8295

√
Sa, ζL = 0.8628

√
Sa;

when m = 2000, ζM = 0.8497
√
Sa, ζL = 0.8628

√
Sa.
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For our comparison, we pick the largest values we got from the above experimen-

t: let ζM = 0.9328
√
Sa and ζL = 0.8734

√
Sa. With these values, modified-CS needs

LHS of condition 3 > 13.99ε and modified-CS-Add-LS-Del needs LHS of condition 3 >

max{αadd + 7.00ε, 10.978ε+ 3.246αadd} = 10.978ε+ 3.246αadd. With αadd small enough,

clearly modified-CS-add-LS-del requires a weaker assumption. As explained earlier and

also in [30], αadd is a small threshold that is typically proportional to the noise bound

c, i.e., ε/
√
n. Thus the mod-CS-Add-LS-Del condition is weaker.

The comparison between modified-CS and modified-CS-add-LS-del above is not as

clear-cut as that in the simple model case (Signal Change Assumptions 1). The reason is

that the simple model tells us exactly how many support additions and removals occur

at each time; and it also tells us the exact number of elements with a certain magnitude.

As a result, it is possible to get a better bound on ‖x∆t,add
‖2: this is needed to bound

the LS step error. The LS error decides the value of αdel and αdel, in turn, decides the

lower bound on the LHS of condition 3. The current Signal Change Assumptions 2 or

3 are much more flexible, but this also means that they not give us exact magnitude

information. As a result, the bounds are looser and so the advantage of modified-CS-

add-ls-del is not demonstrated as clearly.

Remark 2.5.12. Finally, we explain why condition 1a of Theorem 2.5.9 is stated the

way it is. Because of how the modified-CS error is bounded, we cannot get a bound on

the reconstruction error for the jth coefficient, |(x̂t)j − (xt)j|. We can only bound this

error by its infinity norm. Thus, the only way to get an explicit value for αadd is to let it

equal the upper bound on ‖x̂t−xt‖∞ and this will ensure f = 0 false adds. However, the

key point of the add-LS-del procedure is that one can pick an addition threshold that is

smaller than this but results in some false adds, f . As long as f is small enough so that

ATadd is well conditioned (condition 2b holds), the LS step error will be much smaller.

With αdel chosen appropriately, one can still delete all of these false adds (as well as all

elements of the removed set) in the deletion step.
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2.5.5 Comparison with the LS-CS result of [1]

In [1], we obtained a stability result for LS-CS which was a worse algorithm than

modified-CS: it required stronger conditions for exact recovery, and was worse is simu-

lation experiments as shown in [14, 30]. The same signal model and the same strategy

as that of [1] can be used for modified-CS as well and we will, in fact, get a stronger

stability result for it: the modified-CS result will not need condition 3b of the LS-CS

stability result (Theorem 2 of [1]).

The most important difference between the LS-CS result from [1] and our results is

that [1] assumed Sa support changes every p frames and the result required a lower bound

on p. With this, one could ensure that all newly added support elements got detected

before the next support change time. This meant that one could delete the false adds

and removals after all new adds got detected, but before the next change time. At this

time, the signal recovery is very accurate (because of zero misses) and hence, for the

result of [1], a very small deletion threshold could suffice. However, as explained earlier

(see Fig 1.1), support change every so often is not a practically valid assumption in most

applications. In this work, we allow the support to change at every time which is more

realistic, but is also more difficult to analyze. With this, one always has some misses at

each time instant (except in the simplest case where all new elements are added at very

large magnitudes). Thus, one cannot wait for all the missed elements to get detected

before deleting the false adds and removals and hence one requires a larger deletion

threshold.

A third difference is that the signal change model of [1] fixed the number of support

additions and removals at each time to be just Sa; it fixed the initial magnitude and the

rate of magnitude increase for a new support element j to both be aj at all times; and, for

decreasing coefficients, it assumed a very specific and fixed rate of magnitude decrease.

None of these is a very practical assumption. Our realistic signal change models (Signal

Change Assumptions 2 or 3) allow all these things to vary with time.
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2.6 Model Verification

We verified that two different types of MRI image sequences – a larynx (vocal tract)

MRI sequence and a brain functional MRI sequence – do indeed satisfy Signal Change

Assumptions 2. First we describe model verification for the larynx sequence. We used

a 10 frame sequence and extracted out a 36x36 region of this sequence selected as the

region that includes the part where most of the changes were visible. As shown in earlier

work [14], this sequence is approximately sparse in the 2D discrete wavelet transform

(DWT) domain. A two level db4 wavelet was used there. We computed this 2D DWT,

re-arranged it as a vector and computed its 99.9% energy support set. All elements not

in this set were set to zero. This gave us an exactly sparse sequence xt. Its dimension

m = 362 = 1296. For this sequence, we observed the following. The support size Nt
satisfied |Nt| ≤ S = 113 for all t. The number of additions from t − 1 to t satisfied

|Nt \ Nt−1| ≤ 21 and the number of removals, |Nt−1 \ Nt| ≤ 26. Thus, Sa = 26. Also,

the initial nonzero value, aj,t, ranged from 13 to 37, the rate of magnitude increase, rj,t,

ranged from 1 to 37, and the duration for which the increase occurred, dj,t, ranged from

0 to 4. Also, the maximum delay between the time that a coefficient began to decrease

and when it was removed was b = 7.

Next we consider a 64x64 functional MRI sequence. fMRI is a technique that is used

to investigate brain function. The sequence we study here is for the brain responding to

a certain type of stimulus (light being turned on and off). This sequence consisted of a

rest state brain sequence to which activation was added based on the models suggested

in [62]. The goal is to be able to accurately extract out the activation region from this

sequence. As is done in [20], one can use the undersampled ReProCS algorithm to extract

out the sparse activation regions from the low rank background brain image sequence, as

long as an initial background brain training sequence is available. In our example, the

activation started at frame 71. For the purpose of ReProCS, the active region “image”
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Figure 2.3: (a): plot of the BOLD signal and of its square. (b): active, transient and
inactive brain regions.

(the image that is zero everywhere except in the active region), is the sparse signal of

interest. For a 23 pixel region that is known to correspond to the part of the brain

that is affected by the above stimulus, the activation was added follows [62]. The 23

pixel region was split into 2 sub-regions so that the activation intensity was smallest at

the boundary of the region and slowly increased as one moved inwards. We show the 2

regions in Fig 2.3b. R1 is the innermost region, R2 is the outermost. The activation in

these regions satisfied the following model. For j ∈ R1, (xt)j = b(t)Ma. For j ∈ R2,

(xt)j = 0.2b(t)2Ma. Here Ma = 1783 is the maximum magnitude in the active region and

b(t) is the blood oxygenation level dependent (BOLD) signal taken from [62]. It is plotted

in Fig 2.3a. This image sequence was of size 64x64, i.e. its dimension m = 642 = 4096.

We computed its 99.9% energy support and set all elements not in this set to zero. This

gave us our sparse sequence xt. The support size of xt, Nt, satisfied |Nt| ≤ S = 23 for all

t. The number of additions from t−1 to t satisfied |Nt\Nt−1| ≤ Sa = 13 and the number

of removals, |Nt−1 \ Nt| ≤ Sa = 13. Also, the initial nonzero value, aj,t, ranged from 57

to 97, the rate of magnitude increase, rj,t, ranged from 1 to 637, and the duration for

which the increase occurred, dj,t, ranged from 6 to 7. Also, the maximum delay between

the time that a coefficient began to decrease and when it was removed was b = 7.
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2.7 Setting Algorithm Parameters And Simulation Results

2.7.1 Setting algorithm parameters automatically

Algorithm 1 has one parameter α. Algorithm 2 has two parameters αadd, αdel. We

explain here how to set these thresholds automatically. It is often fair to assume that

the noise bound on ε is known, e.g. it can be estimated using a short initial noise-only

training sequence. We assume this here. In cases where it is not known or can change

with time, one can approximate it by ‖yt−1−At−1x̂t−1‖2 (assuming accurate recovery at

t− 1).

Define the minimum nonzero value at time t, xmin,t = minj∈Nt |(xt)j|. This can be

estimated as x̂min,t = minj∈T̃t−1
|(x̂t−1)j|.

When setting the thresholds automatically, they will change with time. We set

αadd,t using the following heuristic. By Lemma 2.2.9, we have (xt − x̂t,add)Tadd,t
=

(ATadd,t

′ATadd,t
)−1[ATadd,t

′wt +ATadd,t

′A∆add,t
(xt)∆add,t

]. To ensure that this is bounded, we

need ‖ATadd,t

†‖ and ‖(ATadd,t

′ATadd,t
)−1‖ to be bounded. Since ‖ATadd,t

†‖ = 1
σmin(ATadd,t

)

and ‖(ATadd,t

′ATadd,t
)−1‖ = 1

σ2
min(ATadd,t

)
, we pick αadd,t as smallest number such that

σmin(ATadd,t
) ≥ 0.4.

If one could set αdel equal to the lower bound on xmin,t − ‖(xt − x̂t,add)Tadd,t
‖∞, there

will be zero misses. Using this idea, we let αdel,t be an estimate of the lower bound of

this quantity. Notice that

‖(xt − x̂t,add)Tadd,t
‖∞ ≤ ‖(A†Tyy,tA∆add

xt,∆add
+ A†Tadd,t

wt‖∞

≤ ‖(ATadd,t

′ATadd,t
)−1‖∞‖ATadd,t

A∆add
xt,∆add

‖∞ + ‖A†Tadd,t
wt‖∞

≈ ‖(ATadd,t

′ATadd,t
)−1‖∞C1θ|Tadd,t|,|∆add|C2x̂min + ‖A†Tadd,t

ŵt‖∞,

where C1, C2 are some constant larger than 1. Here we use the fact that for any matrix

B, ‖B‖∞ ≤ C1‖B‖ for some constant C1 and that only small elements are missed and

hence we can approximate ‖xt,∆add
‖∞ by C2 times x̂min,t where C2 is a small constant
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larger than 1. We cannot compute θ|Tadd,t|,∆add
, but it is fair to assume that it is small

(significantly smaller than one). If we assume that

C1C2‖(ATadd,t

′ATadd,t
)−1‖∞θ|Tadd,t|,|∆add| ≤ 0.3,

then the above bound simplifies to 0.3x̂min,t + ‖A†Tadd,t
ŵt‖∞. We can approximate ŵt by

yt − Ax̂t,modcs. Thus, we set αdel,t = 0.7x̂min,t − ‖A†Tadd,t
(yt − Ax̂t,modcs)‖∞.

For Algorithm 1, we set αt as follows. If ‖xt − x̂t,modcs‖∞ ≤ Cxmin,t for some C < 1,

then setting αt = (1− C)xmin,t will ensure that there are no misses. If this bound holds

for most entries i, then most entries will be correctly recovered, i.e., there will be few

misses. If we ensure σmin(AT̃t) ≥ 0.4 then the number of extras will be bounded. To

try to ensure that both the above hold, we let αt to be the smallest value such that

minj∈T̃t |(x̂t,modcs)j|j ≥ (1− C)x̂min,t = 0.5x̂min,t (we pick C = 0.5), and σmin(AT̃t) ≥ 0.4.

To get a more robust estimate of the minimum nonzero value of xt, we use a short-

time average of {x̂min,τ , t − t0 ≤ τ ≤ t} as the estimate of xmin,t. In our experiments,

t0 = 10.

2.7.2 Simulation results

In the discussion so far, we only compared sufficient conditions required by different

algorithms. The general conclusion obtained by comparing the sufficient conditions was

that modified-CS-add-LS-del is the best algorithm followed by modified-CS and then

noisy `1. In this section, we use simulations to demonstrate the same thing. We compared

noisy `1 (simple CS), i.e. solution of (2.1) at each time instant, modified-CS(mod-CS)

as given in Algorithm 1, and modified-CS-add-LS-del (mod-CS-Add-LS-Del) as given in

Algorithm 2. The parameters for the algorithms were set as explained in Sec 2.7.1 above.

The data was generated as follows. We used Signal Model 2 generated as explained

in Appendix A.0.9 with m = 200, S = 20, dmin = 3, amin = rmin(dmin) = r, Sa = 2,

b = 3, ` = amin + dminrmin(dmin) = 4r and r was varied. The measurement matrices At
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were zero mean random Gaussian nt × m matrices with columns normalized to unit

norm. We used n0 = 160 and nt = n = 57 for t > 0. The measurement noise,

(wt)j ∼i.i.d. uniform(−ct, ct) for 1 ≤ j ≤ m. For t = 0, ct = 0.01266; for t ≥ 1,

ct = c = 0.1266. Here ∼i.i.d. means that (wt)j are independent and identically distributed

(i.i.d.) both for different j’s and for different t’s.

In the first set of experiments shown in Fig. 2.4, we used the same measurement

matrix At = A for all t ≥ 1. In the second experiment shown in Fig. 2.5, At was time

varying.

The normalized mean squared error (NMSE), E[‖xt−x̂t‖2]
E[‖xt‖2]

, the normalized mean extras,

E[|Ñt\Nt|]
E[|Nt|] , and the normalized mean misses, E[|Nt\Ñt|]

E[|Nt|] are used to compare the reconstruc-

tion performance. Here E[.] denotes the empirical mean over the 500 realizations. Con-

sider the results of Fig 2.4. Clearly, both mod-CS and mod-CS-Add-LS-Del significantly

outperform noisy `1 (simple CS). This is because for t > 0, the number of measurements,

nt = 57 is too small for a 200 length 20 sparse signal. When amin = rmin(dmin) = r

is large enough, both mod-CS and mod-CS-Add-LS-Del are stable at 5% error or less.

When r is reduced, mod-CS becomes unstable. Of course when r is reduced even further

to r = 0.2, both become unstable (not shown). If Fig 2.5, we show results for the case

when At changes with time and all other parameters are the same as Fig 2.4 (a). Clearly

in this case, the performance of both mod-CS and mod-CS-add-LS-del has improved

significantly.

In Fig. 2.6, we plot the average value of αadd,t for the simulations corresponding to

Fig 2.5. As can be seen, this threshold is close to 4c = 4ε/
√
n at all times.

For solving the minimization problems given in (2.1) and (2.2), we used the YALL1

software, which is provided in http://yall1.blogs.rice.edu/. Both the modified-CS algo-

rithms and noisy `1 took roughly the same amount of time. For the results of Fig. 2.5,

when running the code in MATLAB on the same server, noisy `1 needed 0.0466 seconds

per frame; mod-CS needed 0.0432 seconds per frame and mod-CS-Add-LS-Del needed
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0.0517 seconds. These numbers are computed by averaging over all 500 realizations and

over the 200 time instants per realization.
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CHAPTER 3. BATCH SPARSE RECOVERY IN LARGE

AND STRUCTURED NOISE - MODIFIED PCP

3.1 Correctness Result

We first state the assumptions required for the result and then give the main result

and discuss it.

3.1.1 Assumptions

As explained in [32], we need that S is not low rank in order to separate it from Lnew.

One way to ensure that S is full rank w.h.p. is by selecting the support of S uniformly

at random [32]. We assume this here too. In addition, we need a denseness assumption

on G and on the left and right singular vectors of Lnew.

Let n(1) = max(n1, n2) and n(2) = min(n1, n2). Assume that following hold with a

constant ρr that is small enough (we set its values later in Assumption 3.1.2).

max
i
‖[G Unew]∗ei‖2 ≤ ρrn(2)

n1 log2 n(1)

, (3.1)

max
i
‖V∗newei‖2 ≤ ρrn(2)

n2 log2 n(1)

, (3.2)

and

‖UnewV∗new‖∞ ≤
√

ρr

n(1) log2 n(1)

. (3.3)
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3.1.2 Main result

We state the main result in a form that is slightly different from that of [32]. It

eliminates the parameter µ and combines the bound on µr directly with the incoherence

assumptions (µ is a parameter defined in [32] to quantify the denseness of U and V and

the incoherence between their rows) . We state it this way because it is easier to interpret

and compare with the result of PCP. In particular, the dependence of the result on n(2)

is clearer this way. The corresponding result for PCP in the same form is an immediate

corollary.

Theorem 3.1.1. Consider the problem of recovering L and S from M using partial

subspace knowledge G by solving modified-PCP (1.8). Assume that Ω, the support set of

S, is uniformly distributed with size m satisfying

m ≤ 0.4ρsn1n2 (3.4)

Assume that L satisfies (3.1), (3.2) and (3.3) and ρs, ρr, are small enough and n1, n2

are large enough to satisfy Assumption 3.1.2 given below. Then, Modified-PCP (1.8)

with λ = 1/
√
n(1) recovers S and L exactly with probability at least 1− 23n−10

(1) .

Assumption 3.1.2. Assume that ρs, ρr and n1, n2 satisfy:

(a) ρr ≤ min{10−4, 7.2483× 10−5C−4
03 }

(b) ρs = min{1− 1.5b1(ρr), 0.0156} where b1(ρr) := max
{

60ρ
1/2
r , 11C01ρ

1/2
r , 0.11

}
(c) n(1) ≥ max {exp(0.5019ρr), exp(253.9618C01ρr), 1024}

(d) n(2) ≥ 100 log2 n(1),

(e) (n1+n2)1/6

log(n1+n2)
> 10.5

(ρs)1/6(1−5.6561
√
ρs)
,

(f)
n(1)n(2)

500 logn(1)
> 1/ρ2

s
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where C01, C03 are numerical constants from Lemma B.0.6 ([63, Theorem 4.1]) and Lem-

ma B.0.8 ([63, Theorem 6.3]) respectively. Their expressions were not specified in the

original paper.

Proof: We prove this result in Sec 3.3.

3.1.3 Discussion w.r.t. PCP

The PCP program of [32] is (1.8) with no subspace knowledge available, i.e. GPCP =

[ ] (empty matrix). With this, Theorem 3.1.1 simplifies to the corresponding result for

PCP. Thus, Unew,PCP = U and Vnew,PCP = V and so PCP needs

max
i
‖U∗ei‖2 ≤ ρrn(2)

n1 log2 n(1)

, (3.5)

max
i
‖V∗ei‖2 ≤ ρrn(2)

n2 log2 n(1)

, (3.6)

and

‖UV∗‖∞ ≤
√

ρr

n(1) log2 n(1)

. (3.7)

Notice that the second and third conditions needed by modified-PCP, i.e. (3.2) and

(3.3), are always weaker than (3.6) and (3.7) respectively. They are much weaker when

rnew is small compared to r. When rextra = 0, range(G) = range(U0) and so the first

condition is the same for both modified-PCP and PCP. When rextra > 0 but is small, the

first condition for modified-PCP is slightly stronger. However, as we argue below the

third condition is the hardest to satisfy and hence in all cases except when rextra is very

large, the modified-PCP requirements are weaker. We demonstrate this via simulations

and for some real data in Sec 3.4.2 (see Fig 3.1b and Fig 3.3b) and 3.4.5.

The third condition constrains the inner product between the rows of two basis

matrices U and V while the first and second conditions only constrain the norm of

the rows of a basis matrix. On first glance it may seem that the third condition is
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implied by the first two using the Cauchy-Schwartz inequality. However that is not

the case. Using Cauchy-Schwartz inequality, the first two conditions only imply that

‖UV∗‖∞ ≤
√

ρr
n(1) log2 n(1)

√
ρrn(2)

logn(1)
which is looser than what the third condition requires.

3.2 Online Robust PCA

Consider the online / recursive robust PCA problem where data vectors yt := st + `t

come in sequentially and their subspace can change over time. Starting with an initial

knowledge of the subspace, the goal is to estimate the subspace spanned by `1, `2, . . . `t

and to recover the st’s. Assume the following subspace change model introduced in [44]:

`t = P(t)1.5t where P(t) = Pj for all tj ≤ t < tj+1, j = 0, 1, . . . J . At the change

times, Pj changes as Pj = [(Pj−1Rj \ Pj,old) Pj,new] where Pj,new is a n × cj,new basis

matrix that satisfies P∗j,newPj−1 = 0; Rj is a rotation matrix; and Pj,old is a n × cj,old

matrix that contains a subset of columns of Pj−1Rj. Also assume that cj,new ≤ c and∑
j(cj,new − cj,old) ≤ cdif . Let rj := rank(Pj). Clearly, rj = rj−1 + cj,new − cj,old and so

rj ≤ rmax = r0 + cdif .

For the above model, the following is an easy corollary.

Corollary 3.2.1 (modified-PCP for online robust PCA). Let Mj := [ytj ,ytj+1, . . .ytj+1−1],

Lj := [`tj , `tj+1, . . . `tj+1−1], Sj := [stj , stj+1, . . . stj+1−1] and let Lfull := [L1,L2, . . .LJ ] and

Sfull := [S1,S2, . . .SJ ]. Suppose that the following hold.

1. Sfull satisfies the assumptions of Theorem 3.1.1.

2. The initial subspace range(P0) is exactly known, i.e. we are given P̂0 with range(P̂0) =

range(P0).

3. For all j = 1, 2, . . . J , (3.1), (3.2), and (3.3) hold with n1 = n, n2 = tj+1 − tj,

G = Pj−1, Unew = Pj,new and Vnew being the matrix of right singular vectors of

Lnew = (I−Pj−1P
∗
j−1)Lj.
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4. We solve modified-PCP at every t = tj+1, using M = Mj and with G = Gj = P̂j−1

where P̂j−1 is the matrix of left singular vectors of the reduced SVD of L̂j−1 (the

low-rank matrix obtained from modified-PCP on Mj−1). At t = t1 we use G = P̂0.

Then, modified-PCP recovers Sfull,Lfull exactly and in a piecewise batch fashion with

probability at least (1− 23n−10)J .

Proof. Denote by Θ0 the event that range(P̂0) = range(P0). For j = 1, 2, . . . J , denote by

Θj the event that the program (1.8) succeeds for the matrix M = Mj, i.e. Sj and Lj are

exactly recovered. Clearly, Θj also implies that range(P̂j) = range(Pj). Using Theorem

3.1.1 and the model, we then get that probability P(Θj|Θ0,Θ1, . . .Θj−1) ≥ 1 − 23n−10.

Also, by assumption, P(Θ0) = 1. Thus by chain rule, P(Θ0,Θ1,Θ2, · · · ,ΘJ) ≥ (1 −

23n−10)J .

Discussion w.r.t. PCP. For the data model above, two possible corollaries for PCP

can be stated.

Corollary 3.2.2 (PCP for online robust PCA). If Sfull satisfies the assumptions of The-

orem 3.1.1 and if (3.1), (3.2), and (3.3) hold with n1 = n, n2 = tJ+1 − t1, GPCP = [ ],

Unew,PCP = U = [P0,P1,new, . . .PJ,new] and Vnew,PCP = V being the right singular vec-

tors of Lfull := [L1,L2, . . .LJ ], then, we can recover Lfull and Sfull exactly with probability

at least (1− 23n−10) by solving PCP (1.1) with input Mfull. Here Mfull := Lfull + Sfull.

When we compare this with the result for modified-PCP, the second and third con-

dition are even more significantly weaker than those for PCP. The reason is that Vnew

contains at most c columns while V contains at most r0 + Jc columns. The first con-

ditions cannot be easily compared. The LHS contains at most rmax + c = r0 + cdif + c

columns for modified-PCP, while it contains r0 +Jc columns for PCP. However, the RHS

for PCP is also larger. If tj+1− tj = d, then the RHS is also J times larger for PCP than

for modified-PCP. The above advantage for mod-PCP comes with two caveats. First,
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modified-PCP assumes knowledge of the subspace change times while PCP does not need

this. Secondly, modified-PCP succeeds w.p. (1 − 23n−10)J ≥ 1 − 23Jn−10 while PCP

succeeds w.p. 1 − 23n−10. Alternatively if PCP is solved at every t = tj+1 using Mj,

we get the following corollary

Corollary 3.2.3 (PCP for Mj). Solve PCP, i.e. (1.1), at t = tj+1 using Mj. If Sfull

satisfies the assumptions of Theorem 3.1.1 and if (3.1), (3.2), and (3.3) hold with n1 = n,

n2 = tj+1 − tj, GPCP = [ ], Unew,PCP = Pj and Vnew,PCP = Vj being the right singular

vectors of Lj for all j = 1, 2, . . . , J , then, we can recover Lfull and Sfull exactly with

probability at least (1− 23n−10)J .

When we compare this with modified-PCP, the second and third condition are sig-

nificantly weaker than those for PCP when cj,new � rj. The first condition is exactly

the same when cj,old = 0 and is only slightly stronger as long as cj,old � rj.

Discussion w.r.t. ReProCS. In [21, 64, 44], Qiu et al studied the online / recur-

sive robust PCA problem and proposed a novel recursive algorithm called ReProCS.

With the subspace change model described above, they also needed the following “slow

subspace change” assumption: ‖P ∗j,new`t‖ is small for sometime after tj and increases

gradually. Modified-PCP does not need this. Moreover, even with perfect initial sub-

space knowledge, ReProCS cannot achieve exact recovery of st or `t while, as shown

above, modified-PCP can. On the other hand, ReProCS is a recursive algorithm while

modified-PCP is not; and for highly correlated support changes of the st’s, ReProCS

outperforms modified-PCP (see Sec 3.4). The reason is that correlated support change

results in S also being rank deficient, thus making it difficult to separate it from Lnew by

modified-PCP.

Discussion w.r.t. the work of Feng et al. Recent work of Feng et. al. [65, 66] provides

two asymptotic results for online robust PCA. The first work [65] does not model the

outlier as a sparse vector but just as a vector that is “far” from the low-dimensional data
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subspace. In [66], the authors reformulate the PCP program and use this to develop a

recursive algorithm that comes “close” to the PCP solution asymptotically.

3.3 Proof of Theorem 3.1.1: Main Lemmas

Our proof adapts the proof approach of [32] to our new problem and the modified-

PCP solution. The main new lemma is Lemma 3.3.7 in which we obtain different and

weaker conditions on the dual certificate to ensure exact recovery. This lemma is given

and proved in Sec 3.3.5. In addition, we provide a proof for two key statements from [32]

for which either a proof is not immediate (Lemma 3.3.1) or for which the cited reference

does not work (Lemma 3.3.2). These lemmas are given below in Sec 3.3.1 and proved in

the Appendix.

We state Lemma 3.3.1 and Lemma 3.3.2 in Sec 3.3.1. We give the overall proof

architecture next in Sec 4.4. Some definitions and basic facts are given in Sec 4.5.2

and 3.3.3. In Sec 3.3.5, we obtain sufficient conditions (on the dual certificate) under

which S,Lnew is the unique minimizer of modified-PCP. In Sec 3.3.6, we construct a dual

certificate that satisfies the required conditions with high probability (w.h.p.). Here, we

also give the two main lemmas to show that this indeed satisfies the required conditions.

The proof of all the four lemmas from this section is given in the Appendix.

Whenever we say “with high probability” or w.h.p., we mean with probability at least

1−O(1)n−10
(1) .

3.3.1 Two lemmas

Lemma 3.3.1. Denote by PUnif and PBer the probabilities calculated under the uniform

and Bernoulli models and let “Success” be the event that (Lnew,S,L
∗G) is the unique

solution of modified-PCP (1.8). Then

PUnif(m0)(Success) ≥ PBer(ρ0)(Success)− e−2n1n2ε20 , where ρ0 =
m0

n1n2

+ ε0.
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The proof is given in Appendix B.0.11. A similar statement is given in Appendix A.1

of [32] but without a proof. The expression for the second term on the right hand side

given there is e
− 2n1n2ε

2
0

ρ0 which is different from the one we derive.

Lemma 3.3.2. Let E be a n1 × n2 random matrix with entries i.i.d. (independently

identically distributed) as

Eij =


1, w. p. ρs/2,

0, w. p. 1− ρs,

−1, w. p. ρs/2.

(3.8)

If ρs < 0.03 and (n1+n2)1/6

log(n1+n2)
> 10.5

(ρs)1/6(1−5.6561
√
ρs)

, then

P(‖E‖ ≥ 0.5
√
n(1)) ≤ n−10

(1) .

The proof is provided in Appendix B.0.12 and uses the result of [67]. In [32], the

authors claim that using [68], ‖E‖ > 0.25
√
n(1) w.p. less than n−10

(1) . While the claim is

correct, it is not possible to prove it using any of the results from [68]. Using ideas from

[68], one can only show that the above holds when n(2) is upper bounded by a constant

times log n(1) (see the Appendix of [69]) which is a strong extra assumption.

3.3.2 Proof architecture

The proof of the theorem involves 4 main steps.

(a) The first step is to show that when the locations of the support of S are Bernoul-

li distributed with parameter ρs and the signs of S are i.i.d ±1 with proba-

bility 1/2 (and independent from the locations), and all the other assumptions
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on L, n1, n2, ρs, ρr in Theorem 3.1.1 are satisfied, then Modified-PCP (1.8) with

λ = 1/
√
n(1) recovers S exactly (and hence also L = M − S) with probability at

least 1− 22n−10
(1) .

(b) By [32, Theorem 2.3], the previous claim also holds for the model in which the signs

of S are fixed and the locations of its nonzero entries are sampled from the Bernoulli

model with parameter ρs/2, and all the other assumptions on L, n1, n2, ρs, ρr from

Theorem 3.1.1 are satisfied.

(c) By Lemma 3.3.1 with ε0 = 0.1ρs, m0 = b0.4ρsn1n2c, since n1n2 > 500 log n1/ρ
2
s

(Assumption 3.1.2(f)), the previous claim holds with probability at least 1−23n−10
(1)

for the model in which the signs of S are fixed and the locations of its nonzero

entries are sampled from the Uniform model with parameter m0, and all the other

assumptions on L, n1, n2, ρs, ρr from Theorem 3.1.1 are satisfied.

(d) By [32, Theorem 2.2], the previous claim also holds for the model in which the

signs of S are fixed and the locations of its nonzero entries are sampled from the

Uniform model with parameter m ≤ m0 = 0.4ρsn1n2, and all the other assumptions

on L, n1, n2, ρs, ρr from Theorem 3.1.1 are satisfied.

Thus, all we need to do is to prove step (a). To do this we start with the KKT

conditions and strengthen them to get a set of easy to satisfy sufficient conditions on

the dual certificate under which Lnew,S is the unique minimizer of (1.8). This is done

in Sec 3.3.5. Next, we use the golfing scheme [70, 32] to construct a dual certificate that

satisfies the required conditions (Sec. 3.3.6).

3.3.3 Basic facts

We state some basic facts which will be used in the following proof.
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Definition 3.3.3 (Sub-gradient [71]). Consider a convex function f : O → R on a

convex set of matrices O. A matrix Y is called its sub-gradient at a point X0 ∈ O if

f(X)− f(X0) ≥ 〈Y, (X−X0)〉.

for all X ∈ O. The set of all sub-gradients of f at X0 is denoted by ∂f(X0).

It is known [72, 73] that

∂‖Lnew‖∗ = {UnewV∗new + W : PTnewW = 0, ‖W‖ ≤ 1}.

and

∂‖S‖1 = {F : PΩF = sgn(S), ‖F‖∞ ≤ 1}.

Definition 3.3.4 (Dual norm [39]). The matrix norm ‖ · ‖♥ is said to be dual to matrix

norm ‖ · ‖♠ if, for all Y1 ∈ Rn1×n2, ‖Y1‖♥ = sup‖Y2‖♠≤1〈Y1,Y2〉.

Proposition 3.3.5 (Proposition 2.1 of [74]). The following pairs of matrix norms are

dual to each other:

• ‖ · ‖1 and ‖ · ‖∞;

• ‖ · ‖∗ and ‖ · ‖;

• ‖ · ‖F and ‖ · ‖F .

For all these pairs, the following hold.

1. |〈Y,Z〉| ≤ ‖Y‖♠‖Z‖♥.

2. Fixing any Y ∈ Rn1×n2, there exists Z ∈ Rn1×n2 (that depends on Y) such that

〈Y,Z〉 = ‖Y‖♠‖Z‖♥.

3. In particular, we can get 〈Y,Z〉 = ‖Y‖1‖Z‖∞ by setting Z = sgn(Y), we can get

〈Y,Z〉 = ‖Y‖∗‖Z‖ by setting Z = UY V∗Y where UY ΣY V∗Y is the SVD of Y, and

we can get 〈Y,Z〉 = ‖Y‖F‖Z‖F by letting Z = Y.
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For any matrix Y, we have

‖Y‖2
F = tr(Y∗Y) =

∑
i,j

|Yij|2 ≤ (
∑
i,j

|Yij|)2 = ‖Y‖2
1

and

‖Y‖2
F = tr(Y∗Y) =

∑
i

σ2
i (Y) ≤ (

∑
i

σi(Y))2 = ‖Y‖2
∗

Let Υ be the linear space of matrices with column span equal to that of the columns of

P1 and row span equal to that of the columns of P2 where P1 and P2 are basis matrices.

Then, for a matrix M,

PΥ⊥M = (I−P1P
∗
1)M(I−P2P

∗
2) and PΥM = M− PΥ⊥M.

Let Υ be the linear space of matrices with column span equal to that of the columns of

P1. Then,

PΥ⊥M = (I−P1P
∗
1)M and PΥM = P1P

∗
1M

For a matrix xy∗ where x and y are vectors,

‖xy∗‖2
F = ‖x‖2‖y‖2.

If an operator A is linear and bounded, then [75]

‖A∗A‖ = ‖A‖2.

3.3.4 Definitions

Here we define the following linear spaces of matrices.

Denote by Γ the linear space of matrices with column span equal to that of the

columns of G, i.e.

Γ := {GY∗, Y ∈ Rn2×rG}, (3.9)

and by Γ⊥ its orthogonal complement.
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Define also the following linear spaces of matrices

Tnew := {UnewY∗1 + Y2V
∗
new, Y1 ∈ Rn2×rnew ,Y2 ∈ Rn1×rnew},

Π := {[G Unew]Y∗1 + Y2V
∗
new, Y1 ∈ Rn2×(rG+rnew),Y2 ∈ Rn1×rnew},

Notice that Tnew ∪ Γ = Π.

Remark 3.3.6. For the matrix eie
∗
j , together with (3.1) and (3.2), we have

‖PΠ⊥eie
∗
j‖2
F

= ‖(I− [G Unew][G Unew]∗)ei‖2‖(I−VnewV∗new)ej‖2

≥ (1− ρr/ log2 n(1))
2,

(3.10)

where ρr/ log2 n(1) ≤ 1 as assumed. Using ‖PΠeie
∗
j‖2
F + ‖PΠ⊥eie

∗
j‖2
F = 1, we have

‖PΠeie
∗
j‖F ≤

√
2ρr

log2 n(1)

. (3.11)

3.3.5 Dual certificates

We modify Lemma 2.5 of [32] to get the following lemma which gives us sufficient

conditions on the dual certificate needed to ensure that modified-PCP succeeds.

Lemma 3.3.7. If ‖PΩPΠ‖ ≤ 1/4, λ < 3/10, and there is a pair (W,F) obeying

UnewV∗new + W = λ(sgn(S) + F + PΩD)

with PΠW = 0, ‖W‖ ≤ 9
10

, PΩF = 0, ‖F‖∞ ≤ 9
10

, and ‖PΩD‖F ≤ 1
4
, then (Lnew,S,L

∗G)

is the unique solution to Modified-PCP (1.8).

Proof. Any feasible perturbation of (Lnew,S,L
∗G) will be of the form

(Lnew + H1,S−H,L∗G + H2), with H1 + GH∗2 = H.

Let G⊥ be a basis matrix that is such that [G G⊥] is a unitary matrix. Then, H1 =

H−GH∗2 = G⊥G∗⊥H + GG∗H−GH∗2. Notice that
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• Lnew = G⊥G∗⊥Lnew and G⊥G∗⊥H = PΓ⊥H.

• For any two matrices Y1 and Y2,

‖G⊥Y1 + GY2‖∗ ≥ ‖G⊥Y1‖∗

where equality holds if and only if Y2 = 0. To see why this holds, let the full SVD

of Y1,Y2 be Y1
SVD
= Q1Σ1V

∗
1 and Y2

SVD
= Q2Σ2V

∗
2. Since [G G⊥] is a unitary

matrix, G⊥Y1+GY2
SVD
= [G⊥Q1 GQ2]

[
Σ1 0
0 Σ2

]
[V1 V2]∗. Thus, ‖G⊥Y1+GY2‖∗ =

trace(Σ1) + trace(Σ2) ≥ trace(Σ1) = ‖G⊥Y1‖∗ where equality holds if and only if

Σ2 = 0, or equivalently, Y2 = 0.

Thus,

‖Lnew + H1‖∗

= ‖G⊥(G∗⊥Lnew + G∗⊥H) + G(G∗H−H∗2)‖∗

≥ ‖G⊥(G∗⊥Lnew + G∗⊥H)‖∗ = ‖Lnew + PΓ⊥H‖∗ (3.12)

where equality holds if and only if H2 = G∗H.

Recall that Tnew∪Γ = Π. Choose a Wa so that 〈Wa,PΠ⊥H〉 = ‖PΠ⊥H‖∗‖Wa‖. This

is possible using Proposition 3.3.5. Let

W0 = PΠ⊥Wa/‖Wa‖.

Thus, W0 satisfies PTnewW0 = 0 and ‖W0‖ ≤ 1 and so it belongs to the sub-gradient

set of the nuclear norm at Lnew. Also,

〈W0,PΓ⊥H〉= 1

‖Wa‖
〈PΠ⊥Wa,PΓ⊥H〉

=
1

‖Wa‖
〈Wa,PΠ⊥PΓ⊥H〉

=
1

‖Wa‖
〈Wa,PΠ⊥H〉 = ‖PΠ⊥H‖∗.
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Let F0 = −sgn(PΩ⊥H). Thus, PΩF0 = 0, ‖F0‖∞ = 1 and so it belongs to the sub-

gradient set of the 1-norm at S. Also,

〈F0,H〉 = 〈F0,PΩ⊥H〉 = −‖PΩ⊥H‖1.

Thus,

‖Lnew + H1‖∗ + λ‖S−H‖1

≥‖Lnew + PΓ⊥H‖∗ + λ‖S−H‖1

(using (3.12))

≥‖Lnew‖∗ + λ‖S‖1 + 〈UnewV∗new + W0,PΓ⊥H〉

− λ〈sgn(S) + F0,H〉

(by definition of sub-gradient)

=‖Lnew‖∗ + λ‖S‖1 + ‖PΠ⊥H‖∗ + λ‖PΩ⊥H‖1

+ 〈UnewV∗new − λsgn(S),H〉

(using W0 and F0 as defined above)

≥‖Lnew‖∗ + λ‖S‖1 + ‖PΠ⊥H‖∗ + λ‖PΩ⊥H‖1

−max(‖W‖, ‖F‖∞)(‖PΠ⊥H‖∗ + λ‖PΩ⊥H‖1) + λ〈PΩD,H〉

(by the lemma’s assumption and Proposition 3.3.5)

≥‖Lnew‖∗ + λ‖S‖1 +
1

10

(
‖PΠ⊥H‖∗ + λ‖PΩ⊥H‖1

)
− λ

4
‖PΩH‖F

(by Proposition 3.3.5 and assumption ‖PΩD‖F ≤
1

4
)

Observe now that

‖PΩH‖F ≤ ‖PΩPΠH‖F + ‖PΩPΠ⊥H‖F

≤ 1

4
‖H‖F + ‖PΠ⊥H‖F

≤ 1

4
‖PΩH‖F +

1

4
‖PΩ⊥H‖F + ‖PΠ⊥H‖F
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and, therefore,

‖PΩH‖F ≤
1

3
‖PΩ⊥H‖F +

4

3
‖PΠ⊥H‖F

≤ 1

3
‖PΩ⊥H‖1 +

4

3
‖PΠ⊥H‖∗

In conclusion,

‖Lnew + PΓ⊥H‖∗ + λ‖S−H‖1

≥ ‖Lnew‖∗ + λ‖S‖1 +
(

(
1

10
− λ

3
)‖PΠ⊥H‖∗ +

λ

60
‖PΩ⊥H‖1

)
> ‖Lnew‖∗ + λ‖S‖1

The last inequality holds because ‖PΩPΠ‖ < 1 and this implies that Π∩Ω = {0} and so

at least one of PΠ⊥H or PΩ⊥H is strictly positive for H 6= 0. Thus, the cost function is

strictly increased by any feasible perturbation. Since the cost is convex, this proves the

lemma.

Lemma 3.3.7 is equivalently saying that (Lnew,S,L
∗G) is the unique solution to

Modified-PCP (1.8) if there is a W satisfying:

W ∈ Π⊥,

‖W‖ ≤ 9/10,

‖PΩ(UnewV∗new − λsgn(S) + W)‖F ≤ λ/4,

‖PΩ⊥(UnewV∗new + W)‖∞ < 9λ/10.

(3.13)

3.3.6 Construction of the required dual certificate

The golfing scheme is introduced by [76, 70]; here we use it with some modification-

s similar to those in [32] to construct dual certificate. Assume that Ω v Ber(ρs) or

equivalently, Ωc v Ber(1− ρs).
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Notice that Ωc can be generated as a union of j0 i.i.d. sets {Ω̄j}j0j=1, where Ω̄j
i.i.d
v

Ber(q), 1 ≤ j ≤ j0 with q, j0 satisfying ρs = (1− q)j0 . This is true because

P((i, j) ∈ Ω) = P((i, j) /∈ Ω̄1 ∪ Ω̄2 ∪ · · · Ω̄j0) = (1− q)j0 .

As there is overlap between Ω̄′js, we have q ≥ (1− ρs)/j0.

Let W = WL + WS, where WL,WS are constructed similar to [32] as:

• Construction of WL via the golfing scheme. Let Y0 = 0,

Yj = Yj−1 + q−1PΩ̄jPΠ(UnewV∗new −Yj−1),

and WL = PΠ⊥Yj0 . Notice that Yj ∈ Ω⊥.

• Construction of WS via the method of least squares. Assume that ‖PΩPΠ‖ ≤

1/4. We prove that this holds in Lemma 3.3.9 below. With this, ‖PΩPΠPΩ‖ =

‖PΩPΠ‖2 ≤ 1/16 and so ‖PΩ − PΩPΠPΩ‖ ≥ 1 − 1/16 > 0. Thus this operator,

which maps the subspace Ω onto itself, is invertible. Let (PΩ − PΩPΠPΩ)−1 denote

its inverse and let

WS = λPΠ⊥(PΩ − PΩPΠPΩ)−1sgn(S).

Using the Neumann series, notice that [32]

(PΩ − PΩPΠPΩ)−1sgn(S) =
∑
k≥0

(PΩPΠPΩ)ksgn(S).

Thus [32],

PΩWS = λsgn(S).

This follows because (PΩ − PΩPΠPΩ) is an operator mapping Ω onto itself, and so

(PΩ − PΩPΠPΩ)−1sgn(S) = PΩ(PΩ − PΩPΠPΩ)−1sgn(S) 1. With this, PΩWS = λPΩ(I −

PΠ)PΩ(PΩ − PΩPΠPΩ)−1sgn(S) = λ(PΩ − PΩPΠPΩ)(PΩ − PΩPΠPΩ)−1sgn(S) = λsgn(S).

1This is also clear from the Neumann series
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Clearly, W = WL + WS is a dual certificate if
‖WL + WS‖ < 9/10,

‖PΩ(UnewV∗new + WL)‖F ≤ λ/4,

‖PΩ⊥(UnewV∗new + WL + WS)‖∞ < 9λ/10.

(3.14)

Next, we present the two lemmas that together prove that (3.14) holds w.h.p..

Lemma 3.3.8. Assume Ω ∼ Ber(ρs). Let j0 = 1.3dlog n(1)e. Under the other assump-

tions of Theorem 3.1.1, the matrix WL obeys, with probability at least 1− 11n−10
(1) ,

(a) ‖WL‖ < 1/16,

(b) ‖PΩ(UnewV∗new + WL)‖F < λ/4,

(c) ‖PΩ⊥(UnewV∗new + WL)‖∞ < 2λ/5.

This is similar to [32, Lemma 2.8]. The proof is in the Appendix.

Lemma 3.3.9. Assume Ω ∼ Ber(ρs), and the signs of S are independent of Ω and

i.i.d. symmetric. Under the other assumptions of Theorem 3.1.1, with probability at

least 1− 11n−10
(1) , the following is true

(a) ‖PΩPΠ‖ ≤ 1/4 and so WS constructed earlier is well defined.

(b) ‖WS‖ < 67/80,

(c) ‖PΩ⊥WS‖∞ < λ/2.

This is similar to [32, Lemma 2.9]. The proof is in the Appendix.
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Table 3.1: Speed comparison of different algorithms. Sequence length refers to the length of
sequence for training plus the length of test sequence.

DataSet Image Size Sequence Length mod-PCP PCP ReProCS GRASTA RSL DEC GOSUS [77]
Yale Face 122× 160 48 + 24 2.7 sec 9.8 sec 0.5 sec 50.2 sec 141.7 sec 21.3 sec

Lake 72× 90 1420 + 80 2.2 sec 1.7 sec 9.3 sec 338.7 sec 26.7 sec
Fig. 3.6a 256× 1 200+2400 2.7 sec 6.2 sec 12.0 sec 5.7 sec 25.4 sec 576.9 sec
Fig. 3.6b 256× 1 200+8000 9.7 sec 18.9 sec 24.8 sec 12.6 sec 67.7 sec 1735.6 sec
Fig. 3.6c 256× 1 200+8000 13.1 sec 18.7 sec 26.1 sec 12.7 sec 74.8 sec 1972.5 sec

3.4 Solving The Modified-PCP Program And Experiments

With It

We first give below the algorithm used to solve modified-PCP. Next, we give recovery

error comparisons for static simulated and real data. Finally we show some online robust

PCA experiments, both on simulated and real data.

3.4.1 Algorithm for solving Modified-PCP

We give below an algorithm based on the Inexact Augmented Lagrange Multiplier

(ALM) method [45] to solve the modified-PCP program, i.e. solve (1.8). This algorithm

is a direct modification of the algorithm designed to solve PCP in [45] and uses the idea

of [46, 47] for the sparse recovery step.

For the modified-PCP program (1.8), the Augmented Lagrangian function is:

L(L̃new, S̃,Y, τ) =‖L̃new‖∗ + λ‖S̃‖1 + 〈Y,M− L̃new − S̃

−GX̃∗〉+
τ

2
‖M− L̃new − S̃−GX̃∗‖2

F ,

Thus, with similar steps in [45], we have following algorithm. In Algorithm 3, Lines 3

solves S̃k+1 = arg min
S̃
‖L̃new,k‖∗+λ‖S̃‖1 + 〈Yk,M− L̃new,k− S̃−GX̃∗k〉+

τ

2
‖M− L̃new,k−

S̃−GX̃∗k‖2
F ; Line 4-6 solve [L̃new,k+1, X̃k+1] = arg min

L̃new,X̃
‖L̃new‖∗ + λ‖S̃k+1‖1 + 〈Yk,M−

L̃new− S̃k+1−GX̃∗〉+ τ

2
‖M− L̃new− S̃k+1−GX̃∗k‖2

F . The soft-thresholding operator is
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Algorithm 3 Algorithm for solving Modified-PCP (1.8)

Input: Measurement matrix M ∈ Rn1×n2 , λ = 1/
√

max{n1, n2}, G.

1: Y0 = M/max{‖M‖, ‖M‖∞/λ}; S̃0 = 0; τ0 > 0; v > 1; k = 0.
2: while not converged do
3: S̃k+1 = Sλτ−1

k
[M−GX̃k − L̃new,k + τ−1

k Yk].

4: (Ũ, Σ̃, Ṽ) = svd((I −GG∗)(M− S̃k+1 + τ−1
k Yk));

5: L̃new,k+1 = ŨSτ−1
k

[Σ̃]ṼT .

6: X̃k+1 = G∗(M− S̃k+1 + τ−1
k Yk)

7: Yk+1 = Yk + τk(M− S̃k+1 − L̃new,k+1 −GX̃k+1).
8: τk+1 = min(vτk, τ̄).
9: k ← k + 1.

10: end while
Output: L̂new = L̃new,k, Ŝ = S̃k, L̂ = M− S̃k.

defined as

Sε[x] =


x− ε, if x > ε;

x+ ε, if x < −ε;

0, otherwise,

(3.15)

Parameters are set as suggested in [45], i.e., τ0 = 1.25/‖M‖, v = 1.5, τ̄ = 107τ0 and

iteration is stopped when ‖M− S̃k+1 − L̃new,k+1 −GX̃k+1‖F/‖M‖F < 10−7.

3.4.2 Simulated data

The data were generated as follows. For the sparse matrix S, we generated a support

set of size m uniformly at random and assigned values ±1 with equal probability to

entries in the support set. We generated the matrix [G Unew] by orthonormalizing an

n1 × (r0 + rextra + rnew) matrix with entries i.i.d. Gaussian N (0, 1/n1); we set U0 as the

first r0 columns of this matrix, Gextra as the next rextra columns and Unew as the last

rnew columns. Then, we set G = [U0, Gextra]. This matrix has rG = r0 + rextra columns.

We generated a matrix Y1 of size rG × d and a matrix Y2 of size (r0 + rnew) × n2 with

entries i.i.d. N (0, 1/n1). We set MG = GY1 as training data and M = [U0 Unew]Y2 +S.

The matrix MG is n1 × d and the M is n1 × n2. We computed G as the left singular

vectors with nonzero singular values of MG and this was used as the partial subspace
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knowledge for modified-PCP. For modified-PCP, we solved (1.8) with M and G using

Algorithm 3. For PCP, we solved (1.1) with M using the Inexact Augmented Lagrangian

Multiplier algorithm from [45]. This section provides a simulation comparison of what

we conclude from the theoretical results. In the theorems, both modified-PCP and PCP

use the same matrix M, but modified-PCP is given extra information (partial subspace

knowledge). In the first set of simulations, we also compare with PCP when it is also

given access to the initial data MG, i.e. we also solve PCP using [MG M]. We refer to

this as PCP([MG M]).

Sparse recovery error is calculated as ‖S− Ŝ‖2
F/‖S‖2

F averaged over 100 Monte Carlo

trials. For the simulated data, we also compute the smallest value of ρr required to

satisfy the sufficient conditions – (3.1), (3.2), (3.3) for mod-PCP and (3.5), (3.6), (3.7)

for PCP. We denote the respective values of ρr by ρr([G Unew]), ρr(Vnew), ρr(UnewVnew),

ρr(U), ρr(V) and ρr(UV). Also,

ρr(mod-PCP) = max{ρr([G Unew]), ρr(Vnew), ρr(UnewVnew)}

and

ρr(PCP) = max{ρr(U), ρr(V), ρr(UV)}.

In Fig. 3.1, we show comparisons with increasing number of extra directions rextra.

We used n1 = 200, d = 200, n2 = 120, m = 0.075n1n2, r = 20, r0 = 0.9r = 18,

rnew = 0.1r = 2 and rextra ranging from 0 to n2 − r = 100. As we can see from Fig.

3.1a, for rextra < 60, mod-PCP performs better than PCP with or without training

data MG. Fig. 3.1b shows that mod-PCP allows a larger value of ρr (needs weaker

assumptions) than PCP. Notice that the recovery error of PCP([MG M]) is larger than

that of PCP(M). This is because the rank of [MG M] is larger than that of M because

of the extra directions. In the rest of the simulations, we only compare with PCP(M).

In Fig. 3.2, we show comparisons with increasing number of new directions rnew

(or equivalently decreasing r0 = r − rnew). We used n1 = 200, d = 200, n2 = 120,
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Figure 3.1: Comparison with increasing rextra (n1 = 200, d = 200, n2 = 120,
m = 0.075n1n2, r = 20, r0 = 18, rnew = 2). In (b), we plot the value of ρr need-
ed to satisfy (3.1), (3.2), (3.3) and (3.5), (3.6), (3.7). We denote the respective val-
ues of ρr by ρr([G Unew]), ρr(Vnew), ρr(UnewVnew), ρr(U), ρr(V) and ρr(UV). No-
tice that ρr(UV) is the largest, i.e. (3.7) is the hardest to satisfy. Notice also that
ρr(mod-PCP) = max{ρr([G Unew]), ρr(Vnew), ρr(UnewVnew)} is significantly smaller than
ρr(PCP) = max{ρr(U), ρr(V), ρr(UV)}.

m = 0.075n1n2, r = 30, rextra = 5 and rnew ranging from 1 to 20 (thus r0 ranges from 29

to 10). As we can see, mod-PCP performs better than PCP.
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Figure 3.2: Comparison with increasing rnew (n1 = 200, d = 200, n2 = 120, m = 0.075n1n2,
r = 30, rextra = 5).

In Fig 3.3, we show a comparison for increasing number of columns n2. For this

figure, we used n1 = 200, d = 60, rG = r0 = 18, rnew = 2,m = 0.075n1n2, and n2 ranging

from 40 to 200. Notice that this is the situation where n2 ≤ n1 so that n(2) = n2 and

n(1) = n1. This situation typically occurs for time series applications, where one would

like to use fewer columns to still get exact/accurate recovery. We compare mod-PCP

and PCP. As we can see from Fig. 3.3a, PCP needs many more columns than mod-PCP

for exact recovery. Here we say exact recovery when ‖S − Ŝ‖2
F/‖S‖2

F is less than 10−6.
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Fig. 3.3b is the corresponding comparison of ρr(mod-PCP) and ρr(PCP) for this dataset

and the conclusion is similar.
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Figure 3.3: Comparison with increasing n2 (n1 = 200, d = 60, rG = r0 = 18, rnew = 2,m =
0.075n1n2).

As pointed out by an anonymous reviewer, notice that there are jumps in Fig 3.1a,

3.2, 3.3a. The reason for these is as follows. The guarantees for modified-PCP (and

also for PCP) hold only with high probability. So there is always a small chance that

modified-PCP fails. In these figures we plot the Monte Carlo based normalized mean

squared error (NMSE). The averaging is done over 100 realizations. This number is small

enough that even if modified-PCP does not give exact recovery and has larger recovery

error for one out of all the realizations, it increases the NMSE by a significant amount.

This is what happened in Fig 3.1a for rextra = 20 or in Fig 3.2 for rnew = 11 or 14 and in

Fig. 3.3a for n2 just large enough for exact recovery. Notice that, in all of these figures,

the “bad” case happens just before the phase transition from near-zero error to large

error. These are precisely the cases for which the probability of exact recovery is smaller

and hence there is a higher chance of modified-PCP failing.

Also, because of the above reason, the phase transition plots given next are more

useful in evaluating algorithms such as modified-PCP or PCP that work with high prob-

ability. The phase transition plots will also have a jump for the above case, except that

the jump will be from probability of failure = zero to probability of failure = 0.01 (in

case of one “bad” case out of 100) and back to zero. The jump from 0 to 0.01 and back

to 0 is so small that it is not even visible.
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We generated phase transition plots similar to those for PCP in [32]. We used the

approach outlined in [32] to generate L,S and M i.e. we let n1 = n2 = 400 and L = XY∗,

where X and Y are independent n1× r i.i.d. N (0, 1/n1) matrix and independent n2× r

i.i.d. (0, 1/n2) matrices respectively. The support Ω of S is of size m and uniformly

distributed and for (i, j) ∈ Ω, P(Sij = 1) = P(Sij = −1) = 1/2. For mod-PCP, we

used rnew = b0.15rc, rextra = b0.15rc and we generated G as follows. We let U0 be the

first (r − rnew) columns of the orthonormalized X, and we generated Gextra as the first

rextra columns of the orthonomalized (I−UU∗)X1. Here U is the matrix of left singular

vectors of L and X1 is a n1 × 2rextra i.i.d. N (0, 1/n1) matrix. We set G = [U0, Gextra].

To show the advantages of mod-PCP with less columns, we also did a comparison

with the same parameters above but with n1 = 400, n2 = 200. Fig. 3.4 shows the

fraction of correct recoveries across 10 trials (as was also done in [32]). Recoveries are

considered correct if ‖L̂− L‖F/‖L‖F ≤ 10−3. As we can see from Fig. 3.4, mod-PCP is

always better than PCP since rnew and rextra are small. But the difference is much more

significant when n2 = n1/2 than when n2 = n1.
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Figure 3.4: Phase transition plots with rnew = b0.15rc, rextra = b0.15rc, n1 = 400

3.4.3 Real data (face reconstruction application)

As stated in [32], robust PCA is useful in face recognition to remove sparse outliers,

like cast shadows, specularities or eyeglasses, from a sequence of images of the same face.

As explained there, without outliers, face images arranged as columns of a matrix are

known to form an approximately low-rank matrix. Here we use the images from the
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(c) Correlated st with |st| large

Figure 3.6: NRMSE of sparse part comparison with online model (n = 256, J = 3, r0 = 40,
t0 = 200, cj,new = 4, cj,old = 4, j = 1, 2, 3)

Yale Face Database [78] that is also used in [32]. Outlier-free training data consisting

of face images taken under a few illumination conditions, but all without eyeglasses, is

used to obtain a partial subspace estimate. The test data consists of face images under

different lighting conditions and with eyeglasses or other outliers. For test data, the goal

is to reconstruct a clear face image with the cast shadows, eyeglasses or other outliers

removed. Thus, the clear face image should be a column of the estimated low-rank

matrix while the cast shadows or eyeglasses should be a column of the sparse matrix.

Each image is of size 243 × 320, which we reduce to 122 × 160. All images are re-

arranged as long vectors and a mean image is subtracted from each of them. The mean

image is computed as the empirical mean of all images in the training data. For the

training data, MG, we use images of subjects with no glasses, which is 12 subjects out of

15 subjects. We keep four face images per subject – taken with center-light, right-light,

left-light, and normal-light – for each of these 12 subjects. Thus the training data matrix
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MG is 19520× 48. We compute G by keeping its left singular vectors corresponding to

99% energy. This results in rG = 38. We use another two face images per subject for

each of the twelve subjects, some with glasses and some without, as the test data, i.e.

the measurement matrix M. Thus M is 19520× 24.

In the experiments, we compare modified-PCP with PCP [32] and ReProCS [21, 64]

and also with some of the other algorithms compared in [64]: robust subspace learn-

ing (RSL) [79], which is a batch robust PCA algorithm that was compared against in

[32], and GRASTA [80], which is a very recent online robust PCA algorithm. We also

compare against Dense Error Correction (DEC) [81, 82] since this first addressed this

application using `1 minimization. To implement Dense Error Correction (DEC) [81, 82],

we normalize each column of MG to get the dictionary (D)n1×48, and we solve

(x̂i, ŝi) = arg min
x̃,s̃
‖x̃‖1 + ‖s̃‖1 subject to Mi = Dx̃ + s̃

using YALL-1. Here Mi is the ith column of M. The solution gives us ŝi and ˆ̀
i = Dx̂i.

For PCP and RSL, we use the test dataset only, i.e., M, which is a 19520× 24

matrix, as the measurement matrix. DEC, ReProCS and GRASTA are provided the

same partial knowledge that mod-PCP gets. Fig. 3.5 shows 3 cases where mod-PCP

successfully removes the glasses into (Ŝ)i and gives the clearest estimate of the person’s

face without glasses as (L̂)i. In the total 24 test frames, both mod-PCP and DEC remove

the glasses (for those having glasses) or remove nothing (for those not having glasses)

correctly in 14 of them, but the result of DEC has extra shadows in the face estimate.

The other algorithms succeed for none of the 24 frames. Both ReProCS and GRASTA

assume that the initial subspace estimate is accurate and “slow subspace change” holds,

neither of which happen here and this is the reason that neither of them work. RSL does

not converge for this data set because the available number of frames is too small. The

time taken by each algorithm is shown in Table 3.1.
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3.4.4 Online robust PCA: simulated data comparisons

For simulation comparisons for online robust PCA, we generated data as explained

in [83]. The data was generated using the model given in Section 3.2, with n = 256,

J = 3, r0 = 40, t0 = 200 and cj,new = 4, cj,old = 4, for each j = 1, 2, 3. The coefficients,

1.5t,∗ = P∗j−1`t were i.i.d. uniformly distributed in the interval [−γ, γ]; the coefficients

along the new directions, 1.5t,new := P∗j,new`t generated i.i.d. uniformly distributed in

the interval [−γnew, γnew] (with a γnew ≤ γ) for the first 1700 columns after the subspace

change and i.i.d. uniformly distributed in the interval [−γ, γ] after that. We vary the

value of γnew; small values mean that “slow subspace change” required by ReProCS holds.

The sparse matrix S was generated in two different ways to simulate uncorrelated and

correlated support change. For partial knowledge, G, we first did SVD decomposition

on [`1, `2, · · · , `t0 ] and kept the directions corresponding to singular values larger than

E(z2)/9, where z ∼ Unif[−γnew, γnew]. We solved PCP and modified-PCP every 200

frames by using the observations for the last 200 frames as the matrix M. The ReProCS

algorithm of [44, 83] was implemented with α = 100. The averaged sparse part errors

with three different sets of parameters over 20 Monte Carlo simulations are displayed

in Fig. 3.6a, Fig. 3.6b, and Fig. 3.6c, and the corresponding averaged time spent for

each algorithm is shown in Table 3.1. For all three figures, we used t1 = t0 + 6α + 1,

t2 = t0 + 12α + 1 and t3 = t0 + 18α + 1 and γ = 5.

In the first case, Fig. 3.6a, we used γnew = γ and so “slow subspace change” does not

hold. For the sparse vectors st, each index is chosen to be in support with probability

0.0781. The nonzero entries are uniformly distributed between [20, 60]. Since “slow

subspace change” does not hold, ReProCS does not work well. Since the support is

generated independently over time, this is a good case for both PCP and mod-PCP.

Mod-PCP has the smallest sparse recovery error. In the second case, Fig. 3.6b, we used

γnew = 1 and thus “slow subspace change” holds. For sparse vectors, st, the support is

generated in a correlated fashion. We used support size s = 5 for each st; the support
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remained constant for 25 columns and then moved down by s = 5 indices. Once it

reached n, it rolled back over to index one. Because of the correlated support change,

PCP does not work. In this case, both mod-PCP and ReProCS work but PCP does

not. In the third case, Fig. 3.6c, the parameters are the same as in the second case,

except that the support size is s = 10 in each column and it moves down by s/2 = 5

indices every 25 columns. In this case, the sparse vectors are much more correlated over

time, resulting in sparse matrix S that is even more low rank, thus neither mod-PCP

nor PCP work for this data. In this case, only ReProCS works. Thus from simulations,

modified-PCP is able to handle correlated support change better than PCP but worse

than ReProCS. Modified-PCP also works when slow subspace change does not hold; this

is a situation where ReProCS fails. Of course, modified-PCP, GRASTA and ReProCS

are provided the same partial subspace knowledge G while PCP and RSL do not get

this information.

In Fig. 4.4, as noted by an anonymous reviewer, one can see jumps in the ReProCS

error at the time instants at which there is a subspace change. This is due to how the

ReProCS algorithm works - it detects subspace change within a short delay of the change

and then slowly improves its estimate of the new subspace. For a detailed explanation,

please see [44].

3.4.5 Online robust PCA: comparisons for video layering

The lake sequence is similar to the one used in [64]. The background consists of a

video of moving lake waters. The foreground is a simulated moving rectangular object.

The sequence is of size 72 × 90 × 1500, and we used the first 1420 frames as training

data (after subtracting the empirical mean of the training images), i.e. MG. The rest 80

frames (after subtracting the same mean image) served as the background L for the test

data. For the first frame of test data, we generated a rectangular foreground support

with upper left vertex (1, j0) and lower right vertex (i1, 25 + j0), where j0 ∼ Unif[1, 30]
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and i1 ∼ Unif[7, 16], and the foreground moves to the right 1 column each time. Then

we stacked each image as a long vector `t of size 6480 × 1. For each index i belonging

to the support set of foreground st, we assign (st)i = 185 − (`t)i. We set M = L + S.

For mod-PCP, ReProCS and GRASTA, we used the approach used in [64] to estimate

the initial background subspace (partial knowledge): do SVD on MG and keep the left

singular vectors corresponding to 95% energy as the matrix G. The averaged normalized

mean squared error (NMSE) of the sparse part over 50 Monte Carlo realizations is shown

in Fig. 3.7a. The averaged time spent for each algorithm is shown in Table 3.1. As can

be seen, in this case, both mod-PCP and ReProCS perform almost equally well, with

ReProCS being slightly better.

To show the advantage of mod-PCP, we did another experiment. In this case, the

support of the foreground was uniformly generated with m = b0.2n1n2c nonzero pixels.

Everything else was the same as in the above experiment. Notice that in this case the

support size of the foreground is 20% while in the previous correlated motion case, it was

much smaller, only 3% on average. The corresponding foreground NMSE comparison is

shown in Fig. 3.7b. Figs. 3.7a and 3.7b again show that when there are many small

and fast-moving foreground objects, modified-PCP is the best algorithm, whereas when

there is one (or a few) slow-moving foreground object(s) ReProCS is slightly better than

modified-PCP.

On our webpage, we have also shown comparisons on a real video sequence consisting

of multiple and small-sized moving persons. This is the airport escalator sequence that

was originally downloaded from http://perception.i2r.a-star.edu.sg/bk_model/

bk_index.html, but is now unavailable at that website. We provide the video and

our experimental results comparing all the methods on our webpage at http://www.

ece.iastate.edu/~jzhan/data/. In this video, the background consists of a moving

escalator and the foreground is moving passengers. We used the first 100 frames of this

sequence as training data (after subtracting the empirical mean of the training images),

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://www.ece.iastate.edu/~jzhan/data/
http://www.ece.iastate.edu/~jzhan/data/
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i.e., MG. The same training data was provided to ReProCS and GRASTA as well. This

is a sequence for which modified-PCP is better than or as good as all other algorithms.

It is significantly better than ReProCS.

Next we compute the value of ρr for the lake video sequence. We calculated prior

knowledge G as explained above. We calculated the singular vectors U,V by doing

SVD decomposition on L and keeping all the directions with corresponding singular

values larger than 10−10 (we choose 10−10 because it is the precision that MATLAB can

achieve for SVD decomposition); calculate Unew,Vnew by doing SVD decomposition of

(I −GG∗)L and keeping all the directions with singular values larger than 10−10. With

this, we get ρr(PCP) = 1.8584× 104 and ρr(mod-PCP) = 1.7785× 104.

We also calculate ρr for fountain02 sequence (available on http://changedetection.net/).

The image size is 288× 432, and we resize it to 96× 144. For the first 600 background

images we form a low rank matrix [MG L] by stacking each image as a column (the first

300 columns belong to MG and the rest belong to L). With the same steps for lake

sequence, we get ρr(PCP) is 4.311× 104 and ρr(mod-PCP) is 1.7866× 104.
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ŝ t
‖
2
/
‖
s t
‖
2

 

 

mod−PCP
ReProCS
PCP
GRASTA
RSL
GOSUS

(a) Correlated st

0 20 40 60 80

10
−2

10
−1

10
0

t

‖
s t

−
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Figure 3.7: Lake sequence NMSE comparison. (a) shows comparisons for one slow-moving
foreground object; (b) shows comparisons for a large number of small-sized fast-moving fore-
ground objects (total foreground support size is much larger for (b)).



www.manaraa.com

81

CHAPTER 4. RECURSIVE (ONLINE) SPARSE

RECOVERY IN LARGE AND STRUCTURED NOISE AND

BOUNDED NOISE

4.1 Introduction

4.1.1 Related work

Solutions for online RPCA have been analyzed in recent works [44], [65], [83, 84, 85].

The work of [44] introduced the Recursive Projected Compressive Sensing (ReProCS)

algorithmic framework and obtained a partial result for it. Another approach for online

RPCA (defined differently from above) and a partial result for it were provided in [65].

We use the term partial result to refer to a performance guarantee that depends on

intermediate algorithm estimates satisfying certain properties. We will see examples of

this in Sec. 4.2.7 when we discuss the above results. In very recent work [83, 84, 85],

a correctness result for ReProCS was obtained. The term correctness result refers to a

complete performance guarantee, i.e., a guarantee that only puts assumptions on the

input data (here mt) and/or on the algorithm initialization, but not on intermediate

algorithm estimates.

Other somewhat related work includes [66] (online PCA with contaminated data that

is not modeled as being sparse) and [86] (modified-PCP, a piecewise batch method). All

the above results are discussed Sec. 4.2.7. Some other works, such as [80](GRASTA),

[87] (adaptive-iSVD), [88] (incremental Robust Subspace Learning) or [77] (GOSUS),
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Figure 4.1: The first column shows the video of a moving rectangular object against moving
lake waters’ background. The object and its motion are simulated while the background is real.
In the next two columns, we show the recovered background (ˆ̀t) and the recovered foreground
support (T̂t) using Automatic ReProCS-cPCA (labeled ReProCS in the figure). The algorithm
parameters are set differently for the experiments (see Sec. 4.8) than in our theoretical result.
Notice that the foreground support is recovered mostly correctly with only a few extra pixels
and the background appears correct too (does not contain the moving block). The quantitative
comparison is shown later in Fig. 4.4. The next few columns show background and foreground-
support recovery using some of the existing methods discussed in Sec. 4.1.1.

[89, 90], [91], [92], [93] only provide an online RPCA algorithm without guarantees. We

do not discuss these here. As demonstrated by the experimental comparisons shown in

[64] and in [86, Fig 6], when the outlier support is large and changes in a correlated

fashion over time, ReProCS-based algorithms significantly outperform most of these,

besides also outperforming batch methods such as PCP and robust subspace learning

(RSL) [32, 79]. This is also evident from Fig. 4.1 and Fig. 4.4.

4.1.2 Contributions

In this work we develop and study an algorithm based on the ReProCS idea intro-

duced and studied in [44, 83, 84, 85]. We call it Automatic ReProCS with cluster PCA

(ReProCS-cPCA). This is an improved ReProCS algorithm compared to the ones stud-

ied in previous work. (1) It is able to automatically detect subspace changes within a

short delay; is able to correctly estimate the number of directions added or deleted; and

is also able to correctly estimate the clusters of eigenvalues along the existing directions.

This is important because it is impractical to assume that a subspace change time or the
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exact number of added or removed directions is known. Additionally, these estimates

themselves are relevant for applications such as understanding dynamic social networks’

structural changes in the presence of outliers. While many heuristics exist to detect

sudden subspace changes, we provide an approach for correctly detecting slow subspace

changes within a short delay. (2) Moreover it is able to accurately estimate both the

newly added subspace as well as the newly deleted subspace. The latter is done by

re-estimating the current subspace using an approach called cluster PCA (cPCA). The

basic cPCA idea was introduced in [44]. The current work uses that idea to develop an

automatic algorithm. The cPCA step ensures that the estimated subspace dimension

does not keep increasing with time. (3) The current algorithm also returns more accu-

rate offline estimates. The algorithms studied in [44, 84] could not do (1) and (3). The

algorithms studied in [83, 84, 85] did not do (2) and (3).

The main contribution of this work is a correctness result (complete performance

guarantee) for the proposed algorithm under relatively mild assumptions on `t, xt, and

wt. To our knowledge, this and [83, 84, 85] are the first correctness results for online

RPCA. The result obtained here removes two key limitations of [83, 84, 85]. (1) First,

we obtain a result for the case where the `t’s can be correlated over time (follow an

autoregressive (AR) model) where as the result of [83, 84, 85] needed mutual indepen-

dence of the `t’s. This models mostly static backgrounds in which changes are only

due to independent variations at each time, e.g., light flickers. However, a large class of

background image sequences change due to factors that are correlated over time, e.g.,

moving waters. This can be better modeled using an AR model. (2) Second, with one

extra assumption – that the eigenvalues of the covariance matrix of `t are clustered for a

period of time after the previous subspace change has stabilized – we are able to remove

another significant limitation of [83, 84, 85]. That result needed the rank of L to grow as

O(log n) while our result allows it to grow as O(n). Batch methods such as PCP allow

the rank to grow almost linearly with n. The clustered eigenvalues assumption is valid
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for data that has variability at different scales - large scale variations would result in the

first (largest eigenvalues’) cluster and the smaller scale variations would form the later

clusters.

Because we use extra assumptions – accurate initial subspace knowledge, slow sub-

space change, and clustered eigenvalues – we are able to remove an important limitation

of batch methods [32, 33, 94]. As we explain in Sec. 4.2.7, our result requires an order-

wise looser bound on the number of time instants for which a particular index i can be

outlier-corrupted compared to these results. In other words, it allows significantly more

correlated changes of the outlier support over time. This is important in practice, e.g.,

in video, foreground objects do not randomly jump around; in social networks, once an

anomalous pattern starts to occur, it remains on many of the same edges for a while. The

clustered eigenvalues assumption is discussed above. Accurate initial subspace knowledge

and slow subspace change were discussed earlier (just above Sec. 1.1.2).

The novelty in the proof techniques used in this work is summarized in Sec. 4.4.1.

The proof relies on the sin θ theorem [95] (that bounds the effect of a perturbation on a

Hermitian matrix’s top eigenvectors) and the matrix Azuma inequality [96].

4.1.3 Notation

We use the interval notation [a, b] to mean all of the integers between a and b, inclu-

sive, and similarly for [a, b) etc. For a set T , |T | denotes its cardinality and T̄ denotes

its complement set. We use ∅ to denote the empty set.

We use ′ to denote a vector or matrix transpose. The lp-norm of a vector and the

induced lp-norm of a matrix are denoted by ‖ · ‖p. For a vector x and set T , xT is a

smaller vector containing the entries of x indexed by entries in T . We use I to denote

the identity matrix. Define IT to be an n× |T | matrix of those columns of the identity

matrix indexed by entries in T . For a matrix A, define AT := AIT . For matrices

P , Q where the columns of Q are a subset of the columns of P , P \ Q refers to the
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matrix of columns in P and not inQ. For a matrixH , H
EVD
= UΛU ′ denotes its reduced

eigenvalue decomposition. For Hermitian matrices A and B, the notation A � B means

that B −A is positive semi-definite.

For a matrix A, the restricted isometry constant (RIC) δs(A) is the smallest real

number δs such that

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2

for all s-sparse vectors x [12]. A vector x is s-sparse if it has s or fewer non-zero entries.

We refer to a matrix with orthonormal columns as a basis matrix. Thus, for a basis

matrix P , P ′P = I. For basis matrices P̂ and P, dif(P̂,P) := ‖(I− P̂P̂′)P‖2 quantifies

error between their range spaces.

4.1.4 Paper organization

This paper is organized as follows. We discuss the data models and the main results

for the proposed algorithm in Sec. 4.2. The Automatic ReProCS-cPCA algorithm is

developed in Sec. 4.3. The stepwise algorithm is summarized in Algorithm 4. The

proof outline of our main result is given in Sec. 4.4. This section also helps understand

the algorithm better and explains the novelty in the proof techniques. The lemmas for

proving the main result, the proof of the main result and the proofs of the main lemmas

are given in Sec. 4.5. The key lemmas needed to prove the main lemmas are proved

in Sec. 4.6 (lemmas for analyzing the projection-PCA based subspace addition step)

and in Sec. 4.7 (lemmas for analyzing the cluster PCA based subspace deletion step).

These are the long sections that contain the new proofs that rely on the matrix Azuma

inequality [96]. This is needed because the `t’s are now correlated over time. Simulation

experiments comparing the proposed algorithm to some existing batch and online RPCA

algorithms are described in Sec. 4.8. Conclusions are given in Sec. 4.9.
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4.2 Data Models And Main Results

In this section, we give the data models and correctness results for our proposed

algorithm, Automatic ReProCS-cPCA, and for its simplification, Automatic ReProCS.

The algorithm itself is developed in Sec 4.3 and the complete stepwise algorithm is

summarized in Algorithm 4. We give below the model on the outlier support sets Tt,

the model on `t, and the denseness assumption. Using these, we state the result for

Automatic ReProCS in Sec. 4.2.5. In Sec. 4.2.6, we state the clustering assumption and

give the correctness result for Automatic ReProCS-cPCA. The results are discussed in

Sec. 4.2.7.

4.2.1 Model on the outlier support set, Tt

We give here one simple and practically relevant special case of the most general

assumptions (Model 10) on the outlier support sets Tt. It requires that the Tt’s have some

changes over time and have size less than s. An example of this is a video application

consisting of a foreground with a 1D object of length s or less that remains static for at

most β frames at a time. When it moves, it moves downwards (or upwards, but always

in one direction) by at least s
ρ

pixels, and at most s
ρ2

pixels. Once it reaches the bottom

of the scene, it disappears. The maximum motion is such that, if the object were to

move at each frame, it still does not go from the top to the bottom of the scene in a

time interval of length α. This is ensured if s
ρ2
α ≤ n. Anytime after it has disappeared

another object could appear. A visual depiction of this model is shown in Fig. 4.2. We

have used this “one object moving in one direction” example to only explain the idea

in a simple fashion. Instead, one could also have multiple moving objects and arbitrary

motions, as long as the union of their supports follows the assumptions of Model 4 below

or those given later in Model 10. These models were introduced in [85].

Model 4 (model on Tt). Let tk, with tk < tk+1, denote the times at which Tt changes
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T [1]

T [2]

T [3]

T [4]

T [5]

T [6]

≤ β

(a) ρ = 3 and β = 5 case

T [1]

T [2]

T [3]

T [4]

T [5]

T [6]

(b) ρ = 1 and β = 1 case

Figure 4.2: Examples of Model 4. (a) shows a 1D object of length s that moves by at least
s/3 pixels at least once every 5 frames (i.e., ρ = 3 and β = 5). (b) shows the object moving by
s pixels at every frame (i.e., ρ = 1 and β = 1). (b) is an example of the best case for our result
- the case with the smallest ρ, β (Tt’s mutually disjoint)

and let T [k] denote the distinct sets. For an integer α,

1. assume that Tt = T [k] for all times t ∈ [tk, tk+1) with (tk+1− tk) < β and |T [k]| ≤ s;

2. let ρ be a positive integer so that for any k, T [k] ∩ T [k+ρ] = ∅; assume that ρ2β ≤

0.0001α;

3. for any k,
∑k+α

i=k+1

∣∣T [i] \ T [i+1]
∣∣ ≤ n and for any k < i ≤ k + α, (T [k] \ T [k+1]) ∩

(T [i] \ T [i+1]) = ∅ (one way to ensure the first condition is to require that for all i,

|T [i] \ T [i+1]| ≤ s
ρ2

with s
ρ2
α ≤ n).

In this model, k takes values 1, 2, . . . ; the largest value it can take is tmax. We set α in

the Theorem.

4.2.2 Model on `t

A common model for data that lies in a low-dimensional subspace is to assume that,

at all times, it is independent and identically distributed (iid) Gaussian with zero mean

and a fixed low-rank covariance matrix Σ. However this can be restrictive since, in many

applications, data statistics change with time, albeit slowly. To model this perfectly,
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one would need to assume that `t is zero mean with covariance matrix Σt at time t.

If Σt
EVD
= PtΛtP

′
t, this means that both Pt and Λt can change at each time t, though

slowly. This is the most general model but it has an identifiability problem if the goal is

to estimate the subspace from which `t was generated, range(Pt). The subspace cannot

be estimated with one data point. If it is r-dimensional, it needs at least r data points.

So, if Pt changes at each time, it is not clear how one can estimate all the subspaces. To

resolve this issue, a general enough but tractable option is to assume that Pt is piecewise

constant with time and Λt can change at each time. To ensure that Σt changes “slowly”,

we assume that, when Pt changes, the eigenvalues along the newly added directions are

small initially for the first d frames, and after that they can increase gradually or suddenly

to any large value. One precise model for this is specified next.

The model below assumes boundedness of `t. This is more practically valid than the

usual Gaussian assumption since most sensor data or noise is bounded. We also replace

independence of `t’s by an AR model with independent perturbations νt and we place

the above assumptions on νt. As explained earlier, this is a more practical model and

includes independence as a special case.

Model 5 (Model on `t). Assume the following.

1. Let `0 = 0 and for t = 1, 2, . . . tmax, assume that

`t = b`t−1 + νt

for a b < 1. Assume that the νt are zero mean, mutually independent and bounded

random vectors with covariance matrix

Cov(νt) = Σt
EVD
= P tΛtP t

′.

2. Let t1, t2, . . . tJ denote the subspace change times. The basis matrices Pt change as

P t =


[(P t−1Rt \ P t,old) P t,new] if t = t1, t2, . . . tJ

P t−1 otherwise.
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where Rt is a rotation matrix, Ptj ,new and Ptj ,old are basis matrices of size n×rj,new
and n × rj,old respectively, P tj ,old contains a subset of columns of P tj−1Rt, and

Ptj ,new
′Ptj−1 = 0 (new directions are orthogonal to previous subspace).

3. Define

λ− := λmin

(
1

ttrain

ttrain∑
t=1

Λt

)
and λ+ := λmax

(
1

ttrain

ttrain∑
t=1

Λt

)
.

The eigenvalues’ matrices Λt are such that (i) λmax(Λt) ≤ λ+ and (ii) for a d <

tj+1 − tj,

0 < λ− ≤ λ−new ≤ λ+
new ≤ 3λ− where

λ−new := min
j

min
t∈[tj ,tj+d]

λmin

(
P tj ,new

′ΣtP tj ,new

)
,

λ+
new := max

j
max

t∈[tj ,tj+d]
λmax

(
P tj ,new

′ΣtP tj ,new

)
. (4.1)

4. Assume that d ≥ (K+2)α. This also implies that tj+1−tj > d ≥ (K+2)α. We set

K and α in the Theorem. This along with (4.1) quantifies “slow subspace change”.

5. Other assumptions: (i) define t0 := 1 and assume that ttrain ∈ [t0, t1); (ii) for j =

0, 1, 2, . . . , J , define rj := rank(P tj), rj,new := rank(P tj ,new), rj,old := rank(P tj ,old)

Clearly, rj = rj−1 + rj,new − rj,old. Assume that rj,new is small enough compared to

rj,old so that rj ≤ r and rj,new ≤ rnew for all j for constants r and rnew. Assume

that r + rnew < min(n, tj+1 − tj) and rnew ≤ r0.

6. Since the νt’s are bounded random variables, there exists a γ <∞ and a γnew ≤ γ

such that

max
t
‖Pt

′νt‖2 ≤ γ, max
j

max
t∈[tj ,tj+d]

‖Ptj ,new
′νt‖∞ ≤ γnew.

We assume an upper bound on γnew in the Thoerem.

A visual depiction of Model 5 is shown in Figure 4.3. The above model is similar

to the ones introduced in [44, 85]. Various low-rank and “slow changing” models on Σt
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1

Pt = P(0)

t1

Pt = P(1) = [(P(0)R1) \ P(1),old P(1),new]

t2

. . .

tj

Pt = P(j) = [(P(j−1)Rj) \ P(j),old P(j),new]

tj+1

Figure 4.3: A diagram of Model 5

are special cases of the above model. One interesting special case is one that allows the

variance along new directions to increase slowly as follows: for t ∈ [tj, tj+d], let Λt,new :=

P tj ,new
′ΣtP tj ,new and assume that (Λt,new)i,i = (vi)

t−tjqiλ− for i = 1, . . . , rj,new. Here

qi ≥ 1 and vi > 1. An upper bound on vi of the form qi(vi)
d ≤ 3 ensures that (4.1) holds.

Remark 4.2.1. Model 5 requires the upper bound on the eigenvalues along the new

directions to hold only for the first d time instants after tj. At any time t > tj + d, the

eigenvalues along Ptj ,new could increase to any large value up to λ+ either gradually or

suddenly.

The above model requires the directions to get deleted and added at the same set

of times t = tj. This is assumed for simplicity. In general, directions from range(Ptj−1)

could get deleted at any other time as well. The lower bound in (4.1) requires the energy

of `t along the new directions at all times t ∈ [tj, tj + d] to be above λ−. With very

minor changes to the proof (of Lemma 4.5.34), we can relax this to the following: we

can let λ−new be the minimum eigenvalue along the new directions of any α-frame average

covariance matrix over the period [tj, tj + d] and require this to be larger than λ−. For

video analytics, this translates to requiring that, after a subspace change, enough (but not

necessarily all) background frames have “detectable” energy along the new directions, so

that the minimum eigenvalue of the average covariance along the new directions is above

a threshold. For the recommendation systems’ application, this means that the initial set

of users may only be influenced by a few, say five, factors, but as more users come in to

the system, some (not necessarily all) of them may also get influenced by a sixth factor

(newly added direction). There is a trade off between the upper bound on λ+
new in (4.1)

in Model 5 above and the bound on ρ2β assumed in Model 4. Allowing a larger value of
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λ+
new will require a tighter bound on ρ2β. We chose one set of bounds, but many other

pairs would also work. For video analytics, this means that if the background subspace

changes are faster, then we also need the foreground objects to be moving more so we

can ‘see’ enough of the background behind them.

4.2.3 Denseness

To separate sparse xt’s from the `t’s, the basis vectors for the subspace from which

the `t’s are generated cannot be sparse. We quantify this using an incoherence condition

similar to [32].

Model 6 (Denseness). Let µ be the smallest real number such that maxi ‖P tj
′Ii‖2

2 ≤ µrj
n

and maxi ‖P tj ,new
′Ii‖2

2 ≤ µrj,new
n

for all j (Ii is the ith column of the identity matrix; thus

P′Ii is the i-th row of P). Assume that

2srµ ≤ 0.09n and 2srnewµ ≤ 0.0004n.

Fact 4.2.2. Model 6 is one way to ensure that ‖P tj
′IT ‖2 ≤ 0.3 and ‖P tj ,new

′IT ‖2 ≤ 0.02

for all sets T with |T | ≤ 2s. This follows using the fact that for an r × s matrix M ,

‖M‖2 ≤
√
smaxi ‖Mi‖2 where Mi is the i-th column vector of M .

4.2.4 Assumption on the unstructured noise wt

Model 7. Assume that the noise wt is zero mean, mutually independent over time, and

bounded with ‖wt‖2 ≤ εw.

4.2.5 Main result for Automatic ReProCS

In this section, we give a correctness result for Automatic ReproCS, i.e., for Algorithm

4 with the cluster PCA (cPCA) step removed. This is exactly the algorithm studied in

our earlier work [85]. The result given in [85] for it required mutual independence of

the `t’s over time. For the video application, this means that background changes at
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different times are due to independent causes, e.g., independent light flickers. This

is often a restrictive assumption. The current result replaces this requirement with

an autoregressive model which is a much better model for background changes due to

correlated factors such as moving lake or sea waters.

The main idea of Automatic ReProCS is as follows. It estimates the initial subspace

as the top r0 left singular vectors of [m1,m2, . . . ,mttrain
]. At time t, if the previous

subspace estimate, P̂t−1, is accurate enough, because of the “slow subspace change”

assumption, projecting mt = xt + `t + wt onto its orthogonal complement nullifies

most of `t. Specifically, we compute yt := Φtmt where Φt := I − P̂t−1P̂t−1
′. Clearly,

yt = Φtxt + bt with ‖bt‖2 being small. Thus recovering xt from yt is a traditional

sparse recovery problem in small noise [12]. We recover xt by l1 minimization with the

constraint ‖yt−Φtx‖2 ≤ ξ and estimate its support by thresholding using a threshold ω.

We use the estimated support, T̂t, to get an improved debiased estimate of xt, denoted

x̂t, by least squares (LS) estimation on T̂t [52]. We then estimate `t as ˆ̀
t = mt − x̂t.

The estimates ˆ̀
t are used in the subspace estimation step which involves (i) detecting

subspace change; and (ii) K steps of projection-PCA, each done with a new set of α

frames of ˆ̀
t, to get an accurate enough estimate of the new subspace. This step is

explained in detail later in Sec. 4.3. Automatic ReProCS has four algorithm parameters

- α, K, ξ, ω - whose values will be set in the result below.

Theorem 4.2.3. Consider Algorithm 4 without the cluster PCA step. Assume that, for

t > ttrain, mt = `t + wt + xt and, for t ≤ ttrain, mt = `t + wt. Pick a ζ that satisfies

ζ ≤ min

{
10−4

(r0 + Jrnew)2
,

0.003λ−

(r0 + Jrnew)2λ+
,

1

(r0 + Jrnew)3γ2
,

0.05λ−

(r0 + Jrnew)3γ2

}
.

Let b0 = 0.1. Suppose that the following hold.

1. enough initial training data is available: ttrain ≥ 32(2(r0+Jrnew)γ2)2

(1−b0)2(0.001rnewζλ−)2 (11 log n+log 8)

2. algorithm parameters are set as:

ξ = ξcor := εw +
2
√
ζ+
√
rnewγnew

1−b0 ; ω = 7ξ; K =
⌈

log(0.85rnewζ)
log(0.2)

⌉
;
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α = αadd where αadd ≥ 32
1.22(2

√
ζ+
√
rnewγnew+2εw)4

(1−b0)6

(1−b20)2

(0.001rnewζλ−)2 (11 log n+ log((52K +

44)J))

3. model on Tt: Model 4 holds;

4. model on `t:

Model 5 holds with Ptj ,new
′[P0,Pt1,new,Pt2,new, . . .Ptj−1,new] = 0, b ≤ b0 = 0.1, and

with
√
rnewγnew small enough so that 14ξ ≤ mint mini∈Tt |(xt)i|;

Model 6 (denseness) holds with r replaced by (r0 + Jrnew).

5. model on wt: Model 7 holds with ε2w ≤ 0.03ζλ−

6. independence: Let T := {Tt̃}t̃=1,2,...,tmax
. Assume that T ,w1,w2, . . . ,wtmax ,ν1,ν2, . . . ,νtmax

are mutually independent random variables.

Then, with probability ≥ 1− 2n−10, at all times t,

1. Tt is exactly recovered, i.e. T̂t = Tt for all t;

2. ‖xt − x̂t‖2 ≤ 1.34
(
2
√
ζ +
√
rnewγnew + εw

)
and ‖ˆ̀t − `t‖2 ≤ ‖xt − x̂t‖2 + εw;

3. the subspace error SEt := ‖(I− P̂ tP̂ t
′)Pt‖2 ≤ 10−2

√
ζ for all t ∈ [tj + d, tj+1).

4. the subspace change time estimates satisfy tj ≤ t̂j ≤ tj + 2α; and its estimates of

the number of new directions are correct: r̂j,new,k = rj,new for j = 1, . . . , J .

Proof: The above result follows as a corollary of the more general result, Theorem

4.2.8, that is given below. For its proof, please see Appendix C.6.

Remark 4.2.4. Consider condition 6). If it is not practical to assume that wt’s are

independent of T (e.g., if wt contains the smaller magnitude outlier entries and xt the

larger ones and so Tt = support(xt) cannot be independent of wt), the following weaker

assumption can be used with small changes to the proof (see Fact 4.6.1 in Sec. 4.6.2). Let

Q := {T , {wt}t=1,2,...,tmax}. Assume that Q,ν1,ν2, . . . ,νtmax are mutually independent.
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Theorem 4.2.3 says the following. If an accurate estimate of the initial subspace is

available (ttrain is large enough); the algorithm parameters are set appropriately; the

outlier support at time t, Tt, has enough changes over time; `t follows an AR model

with parameter b ≤ b0 = 0.1 (i.e., the `t’s are not too correlated over time); the low-

dimensional subspace from which νt is generated (this is also approximately the subspace

from which `t is generated) is fixed or changes “slowly” enough, i.e. (i) the delay between

change times is large enough (tj+1 − tj > d ≥ (K + 2)α) and (ii) the eigenvalues along

the newly added directions are small enough for d frames after a subspace change; the

basis vectors whose span defines the low-dimensional subspaces are dense enough; the

noise wt is small enough; then, with high probability (whp), the error in estimating `t

or xt will be bounded by a small value at all times t. Also, whp, the outlier support

will be exactly recovered at all times; and the error in estimating the low-dimensional

subspace will decay to a small constant times
√
ζ within a finite delay of a subspace

change. Moreover, subspace changes will get detected within a short delay, and the

dimension of the newly added subspaces will get correctly estimated.

The condition “14ξ ≤ mint mini∈Tt |(xt)i|” in condition 4) can be interpreted either as

another slow subspace change condition or as a requirement that the minimum magnitude

nonzero entry of xt (the smallest magnitude outlier) be large enough compared to εw +

√
rnewγnew. Interpreted this way, it says the following. If `t is the true data, mt − `t =

wt + xt is the vector of corruptions with wt being the small corruptions and the nonzero

entries of xt being the large ones (outliers). We need wt to be small enough to not

affect subspace recovery error too much (‖wt‖2 ≤ εw ≤
√

0.03ζλ−) and we need the

nonzero entries of xt to be large enough to be detectable (mint mini∈Tt |(xt)i| ≥ 14ξ ≈

14(εw +
√
rnewγnew)).
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4.2.6 Eigenvalues’ clustering assumption and main result for Automatic

ReProCS-cPCA

The ReProCS algorithm studied above (which is the same as the one introduced in

[85]) does not include a step to delete old directions from the subspace estimate. As a

result, its estimated subspace dimension can only increase over time. This necessitates

a bound on the number of subspace changes, J . The bound is imposed by the denseness

assumption - notice that Theorem 4.2.3 requires the bound in Model 6 to hold with r

replaced by r0 +Jrnew. In this section, we relax this requirement by analyzing automatic

ReProCS-cPCA (Algorithm 4) which includes cluster PCA to delete the old directions

from the subspace estimate. This is done by re-estimating the current subspace.

In order to be able to design an accurate algorithm to delete the old directions

by re-estimating the current subspace, we need one of the following for a period of d2

frames within the interval [tj, tj+1). We either need the condition number of Λt (or

equivalently of Σt) to be small, or we need a generalization of it: we need its eigenvalues

to be “clustered” into a few (at most ϑ) clusters in such a way that the condition number

within each cluster is small and the distance between consecutive clusters is large (clusters

are well separated). The problem with requiring a small upper bound on the condition

number of Σt is that it disallows situations where the `t’s constitute large but structured

noise. This is why the “clustered” generalization is needed. This would be valid for

data that has variations at different scales. For example, for data that has variations at

two scales, there would be two clusters, the large scale variations would form the first

cluster and the small scale ones the second cluster. These clusters would naturally be

well separated.

Let ϑ denote the maximum number of clusters. As we will explain in Sec. 4.3, the

subspace deletion via re-estimation step is done after the new directions are accurately

estimated. As explained later, with high probability (whp), this will not happen until

tj +Kα. Thus, we assume that the clustering assumption holds for the period [tj +Kα+
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1, tj + Kα + d2] with d2 > (ϑ + 3)α and tj+1 − tj > Kα + d2. In the algorithm, cluster

PCA is done starting at t̂j +Kα.

Model 8. Assume the following.

1. Assume that tj+1 − tj > Kα + d2 for an integer d2 ≥ (ϑ+ 3)α (where ϑ is defined

below). Assume that for all t ∈ [tj +Kα+ 1, tj +Kα+ d2], Λt is constant; let Λ(j)

be this constant matrix and assume that λmin(Λ(j)) ≥ λ−.

2. Define a partition of the index set {1, 2, . . . rj} into sets Gj,1,Gj,2, . . . ,Gj,ϑj as fol-

lows. Sort the eigenvalues of Λ(j) in decreasing order of magnitude. To define Gj,1,

start with the first (largest) eigenvalue and keep adding smaller eigenvalues to the

set. Stop when the ratio of the maximum to the minimum eigenvalue first exceeds

g+ = 3 or when there are no more nonzero eigenvalues. Suppose this happens for

the i-th eigenvalue. Then, define Gj,1 = {1, 2, . . . i−1}. For Gj,2, start with the i-th

eigenvalue and repeat the same procedure. Keep doing this until there are no more

nonzero eigenvalues. Let ϑj denote the number of clusters for the j-th subspace and

let ϑ := maxj ϑj. Define

λ+
j,k := max

i∈Gj,k
λi
(
Λ(j)

)
, λ−j,k := min

i∈Gj,k
λi
(
Λ(j)

)
Assume that the clusters are well-separated, i.e.,

λ+
j,k+1

λ−j,k
≤ χ+ = 0.2 (4.2)

Fact 4.2.5. The above way of defining the clusters is one way to ensure that the condi-

tion number of the eigenvalues within each cluster (ratio of the maximum to minimum

eigenvalue of the cluster) is below g+ = 3, i.e., for all k = 1, 2, . . . , ϑj,

λ+
j,k

λ−j,k
≤ g+ = 3. (4.3)
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A model similar to Model 8 was first introduced in [44] where the cluster PCA idea

was introduced.

Remark 4.2.6. The case when, for the entire period [tj + Kα + 1, tj + Kα + d2], the

condition number of Σt is below g+ is a special case of Model 8 with ϑj = ϑ = 1 and

χ+ = 0.

Remark 4.2.7. Model 5 requires the eigenvalues along Ptj ,new to be small for t ∈ [tj, tj+

d] with d ≥ (K + 2)α while Model 8 requires all eigenvalues to be constant for t ∈

[tj+Kα+1, tj+Kα+d2]. Taken together, this means that for all t ∈ [tj, tj+Kα+d2], we

are requiring that the eigenvalues along Ptj ,new be small. However after t = tj +Kα+d2,

there is no constraint on its eigenvalues until t = tj+1 +Kα at which time Model 8 again

requires all eigenvalues to be constant. Thus, in the interval [tj +Kα+d2 +1, tj+1 +Kα],

or in later intervals of the form [tj+j′ + Kα + d2 + 1, tj+j′+1 + Kα] for any j′ > 0, the

eigenvalues along Ptj ,new could increase to any large value up to λ+ either gradually or

suddenly. Or they could also decrease to any small value.

With small changes to the proof, one can relax the Λt constant requirement to

the following. Let ClustInterval denote the interval [tj + Kα + 1, tj + Kα + d2] and

let t0 denote the first time instant of ClustInterval. Define a partition of the index

set {1, 2, . . . rj} into sets Gj,1,Gj,2, . . . ,Gj,ϑj as in Model 8 but by using Λt0 to replace

Λ(j). Assume that for all k = 1, 2, . . . , ϑj, λ
−
j,k ≤ mini∈Gj,k mint∈ClustInterval λi(Λt) ≤

maxi∈Gj,k maxt∈ClustInterval λi(Λt) ≤ λ+
j,k.

At the cost of making our model more complicated, the requirement discussed in

Remark 4.2.7 can also be relaxed, i.e., we can allow the eigenvalues along Ptj ,new to

increase to a large value before imposing Model 8. To do this we need to assume an

upper bound on d. Suppose that (K + 2)α ≤ d ≤ (K + 3)α. Suppose also that we allow

a period of ∆ = 4α frames for the new eigenvalues to increase. We can assume Model 8

holds for the period [tj +Kα+ 3α+ ∆ + 1, tj +Kα+ 3α+ ∆ + d2] with d2 > (ϑ+ 3)α.
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In addition, we would also need tj+1− tj > (K + 3)α+ ∆ + d2. With this, we would run

the cluster PCA algorithm starting at t̂j +Kα+ 3α+ ∆ instead of at t̂j +Kα as we do

now.

We give below a correctness result for Automatic ReproCS-cPCA (Algorithm 4) that

uses the above model. It has one extra parameter, ĝ+, other than the four used by

Automatic ReProCS. ĝ+ is used to estimate the eigenvalue clusters automatically from

an empirical covariance matrix computed using an appropriate set of ˆ̀
t’s.

Theorem 4.2.8. Consider Algorithm 4. Assume that, for t > ttrain, mt = `t + wt + xt

and, for t ≤ ttrain, mt = `t + wt. Pick a ζ that satisfies

ζ ≤ min

{
10−4

(r + rnew)2
,

0.003λ−

(r + rnew)2λ+
,

1

(r + rnew)3γ2
,

0.05λ−

(r + rnew)3γ2

}
.

Let b0 = 0.1. Suppose that the following hold.

1. enough initial training data is available: ttrain ≥ 32(2rγ2)2

(1−b0)2(0.001rnewζλ−)2 (11 log n+log 8)

2. algorithm parameters are set as:

ξ = ξcor := εw +
2
√
ζ+
√
rnewγnew

1−b0 ; ω = 7ξ; K =
⌈

log(0.85rnewζ)
log(0.2)

⌉
; ĝ+ := g++0.06

1−0.06
= 3.26;

α = max{αadd, αdel} where αadd ≥ 32
1.24(2

√
ζ+
√
rnewγnew+2εw)4

(1−b0)6

(1−b20)2

(0.001rnewζλ−)2 (11 log n +

log((52K + 44)J)) and αdel ≥ 321.24r2γ4

(1−b0)6

(1−b20)2

(0.001rnewζλ−)2 (11 log n+ log((52ϑ+ 36)J));

3. model on Tt: Model 4 holds;

4. model on `t:

Model 5 holds with b ≤ b0 = 0.1 and with
√
rnewγnew small enough so that 14ξ ≤

mint mini∈Tt |(xt)i|;

Model 8 holds with |Gj,k| ≥ 0.15(r + rnew);

Model 6 (denseness) holds.

5. model on wt: Model 7 holds with ε2w ≤ 0.03ζλ−
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6. independence: Let T := {Tt̃}t̃=1,2,...,tmax
. Assume that T ,w1,w2, . . . ,wtmax ,ν1,ν2,

. . . ,νtmax are mutually independent random variables.

Then, with probability ≥ 1− 3n−10, at all times t,

1. Tt is exactly recovered, i.e. T̂t = Tt for all t;

2. ‖xt − x̂t‖2 ≤ 1.34
(
2
√
ζ +
√
rnewγnew + εw

)
and ‖ˆ̀t − `t‖2 ≤ ‖xt − x̂t‖2 + εw;

3. the subspace error SEt := ‖(I− P̂ tP̂ t
′)Pt‖2 ≤ 10−2

√
ζ for all t ∈ [tj + d, tj+1);

4. the subspace change time estimates given by Algorithm 4 satisfy tj ≤ t̂j ≤ tj + 2α;

5. its estimates of the number of new directions are correct: r̂j,new,k = rj,new for j =

1, . . . , J ;

6. eigenvalue clusters are recovered exactly: Ĝj,k = Gj,k for all j and k; thus its esti-

mate of the number of deleted directions is also correct.

Proof: The proof outline is given in Section 4.4. The proof is given in Sections 4.5,

4.6, 4.7.

Remark 4.2.9. Notice that the lower bound |Gj,k| ≥ 0.15(r + rnew) can hold only if the

number of clusters ϑj is at most 6. This is one choice that works along with the given

bounds on other quantities such as ρ2β. It can be made larger if we assume a tighter

bound on ρ2β for example. But what will remain true is that our result requires the

number of clusters to be O(1).

Remark 4.2.10. The independence assumption can again be replaced by the weaker one

of Remark 4.2.4.

The extra assumption needed by the above result compared to Theorem 4.2.3 is the

clustering one. Using this, ReProCS-cPCA is able to correctly estimate the current sub-

space. Thus,for t ∈ [tj, t̂j+α], P̂t−1 is an accurate estimate of range(Ptj−1) where as when



www.manaraa.com

100

using ReProCS (and Theorem 4.2.3), it is an estimate of range([P0,Pt1,new,Pt2,new, . . . ,

Ptj−1,new]). Because of this, (i) the above result needs a much weaker denseness assump-

tion, (ii) it does not need a bound on J , and (iii) it requires the new directions to only

be orthogonal to range(Ptj−1).We discuss the results in detail in Sec. 4.2.7.

Corollary 4.2.11. The following conclusions also hold under the assumptions of Theo-

rem 4.2.8 with probability at least 1− 3n−10.

1. The recovery error satisfies ‖ˆ̀t − `t‖2 ≤ ‖xt − x̂t‖2 + εw and

‖xt − x̂t‖2 ≤



1.34
(
2
√
ζ +
√
rnewγnew + εw

)
t ∈ [tj, (ûj + 1)α]

1.34(2.15
√
ζ + 0.19 · (0.1)k−1 t ∈ [(ûj + k − 1)α + 1, (ûj + k)α] ,

·√rnewγnew + εw) k = 2, 3, . . . , K

2.67(
√
ζ + εw) t ∈

[
t̂j +Kα + 1, t̂j +Kα + (ϑ+ 1)α

]
2.67( r

r+rnew

√
ζ + εw) t ∈

[
t̂j +Kα + (ϑ+ 1)α + 1, tj+1 − 1

]
;

2. The subspace error satisfies,

SEt ≤



1 t ∈
[
tj, t̂j + α

]
10−2
√
ζ + 0.19 · 0.1k−1 t ∈

[
t̂j + (k − 1)α + 1, t̂j + kα

]
, k = 2, 3, . . . , K

10−2
√
ζ t ∈

[
t̂j +Kα + 1, t̂j +Kα + (ϑ+ 1)α

]
10−2 r

r+rnew

√
ζ t ∈

[
t̂j +Kα + (ϑ+ 1)α + 1, tj+1 − 1

]
;

Online matrix completion (MC). MC can be interpreted as a special case of

RPCA and hence the same is true for online MC and online RPCA [32, 85]. In [85], we

explicitly stated results for both. In a similar fashion, an analog of either of the above

results can also be obtained for online MC.

Offline RPCA. In certain applications such as video analytics, an improved offline

estimate of both the background and the foreground is desirable. In some other applica-

tions, there is no real need for an online solution. We show here that, with a delay of at
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most (K + 2)α frames, by using essentially the same ReProCS algorithm with one extra

step, it is possible to recover xt and `t with close to zero error.

Corollary 4.2.12 (Offline RPCA). Consider the estimates given in the last two lines of

Algorithm 4. Under the assumptions of Theorem 4.2.8, with probability at least 1−3n−10,

at all times t, ‖xt − x̂offline
t ‖2 ≤ 2.67(

√
ζ + εw), ‖ˆ̀offline

t − `t‖2 ≤ 2.67(
√
ζ + 2εw), and all

its other conclusions hold.

Observe that the offline recovery error can be made smaller and smaller by reducing

ζ (this, in turn, will result in an increased delay between subspace change times). As

can be seen from the last two lines of Algorithm 4, the offline estimates are obtained at

t = t̂j +Kα. Since t̂j ≤ tj + 2α, this means that the offline estimates are obtained after

a delay of at most (K + 2)α frames.

4.2.7 Discussion

Online versus offline. We analyze an online algorithm that is faster and needs

less storage. It needs to store only a few n × α or n × r matrices, while PCP needs to

store matrices of size n × tmax. Other results for online algorithms include correctness

results from [83, 84, 85] (discussed below), and partial results of Qiu et al. [44] and Feng

et al. [65]. In [65], Feng et al. proposed a method for online RPCA and proved a partial

result for their algorithm. Their approach was to reformulate the PCP program and to

use this reformulation to develop a recursive algorithm that converged asymptotically

to the solution of PCP as long as the basis estimate P̂ t was full rank at each time t.

Since this result assumed something about an intermediate algorithm estimate, P̂ t, it

was a partial result. In [44], Qiu et al. obtained a performance guarantee for ReProCS

and ReProCS-cPCA that also needed intermediate algorithm estimates to satisfy certain

properties. In particular, their result required that the basis vectors for the currently

unestimated subspace, range((I−P̂t−1P̂t−1
′)Ptj ,new), be dense vectors. Thus, their result
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was also a partial result. In the current work, we remove this requirement and provide a

correctness result for both ReProCS and ReProCS-cPCA. The assumption that helps us

get this is Model 4 on Tt (or its generalization given in Model 10 later). Secondly, unlike

[44], we provide a correctness result for an automatic algorithm that does not assume

knowledge of subspace change times, number of directions added or removed, or of the

eigenvalue-based subspace clusters. Thirdly, we allow the `t’s to follow an AR model

where as [44] required independence over time.

To our knowledge, our work and [83, 84, 85] are the only correctness results for an

online RPCA method. Our work significantly improves upon the results of [83, 84, 85].

We allow the `t’s to be correlated over time and use a first order AR model to model

the correlation. As discussed earlier, this is significantly more practically valid than

the independence assumption used in [83, 84, 85]. It includes independence as a special

case. Moreover, with the extra clustering assumption, we are able to analyze Automatic

ReProCS-cPCA in Theorem 4.2.8. It needs a much weaker rank-sparsity assumption

than what is needed by the result of [85], and it does not need a bound on J . We discuss

this below.

Bounds on rank and sparsity. Let L := [`1, `2 . . . `tmax ], S := [x1, x2 . . . xtmax ],

rmat := rank(L) and let smat be the number of nonzero entries in S. With our models,

smat ≤ stmax and rmat ≤ r0 + Jrnew with both bounds being tight. Models 4 and 6

constrain s and s, r, rnew respectively. Model 4 needs s ≤ ρ2n/α and Model 6 needs

rs ∈ O(n) and rnews ∈ O(n). Using the expression for α, it is easy to see that if

J ∈ O(n), rnew ∈ O(1) and r ∈ O(log n), then 1
α
∈ O( ζ2

r2 logn
) = O( 1

(logn)9 ) Alternatively,

if r ∈ O(1), then 1
α
∈ O( 1

logn
). Thus, Theorem 4.2.8 definitely holds in two regimes

of interest. The first is J ∈ O(n), rnew ∈ O(1), r ∈ O(log n), smat ∈ O( ntmax

(logn)9 ) and

rmat ∈ O(n). The second is J ∈ O(n), rnew ∈ O(1), r ∈ O(1), smat ∈ O(ntmax

logn
) and

rmat ∈ O(n). The second regime is more favorable when comparing bounds on smat and

rmat, but, it also implies that the dimension of the subspace at any given time is O(1).
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This can be restrictive. The first regime allows the subspace dimension at any time to

be O(log n) which is more reasonable, but, because of this, it needs a tighter bound on

s and hence on smat.

In either regime, our requirements are weaker than those of the PCP results from

[33, 94]: they need rmats = O(n) which implies rmatsmat ∈ O(ntmax); thus if smat ∈

O(ntmax

logn
), they would require rmat to be O(log n). In the first regime, our conditions are

slightly stronger than those of the PCP result from [32] while in the second, they are

comparable: [32] needs rmat ∈ O( n
(logn)2 ) and smat ∈ O(ntmax).

Either set of requirements for Theorem 4.2.8 is significantly weaker than what is

needed by Theorem 4.2.3 or by the results of [83, 84, 85]: both need rmat ∈ O(log n). This

is because both analyze ReProCS without the cluster PCA based subspace deletion step.

Suppose that rj,new = rnew for each j. For ReProCS without cluster PCA, this means

that the dimension of the estimated subspace grows by rnew with each subspace change

time. Thus, the maximum dimension of the estimated subspace is rmat = r0 + Jrnew and

this is what was used in place of r in the denseness assumption as well in the bound

on ζ. This is why these results need rmat to be O(log n). However, in Theorem 4.2.8,

we analyze ReProCS with cluster PCA. Cluster PCA is used to re-estimate the current

subspace and thus effectively delete the subspace corresponding to the old directions.

This ensures that the rank of the estimated subspace is also bounded by the rank of the

true subspace at any time, i.e. by r. Thus, Theorem 4.2.8 only needs r ∈ O(log n) while

rmat can as large as O(n).

No bound on the number of subspace changes, J. Notice that the result

for ReProCS-cPCA given in Theorem 4.2.8 does not require an upper bound on the

number of subspace changes, J . On the other hand, the results for ReProCS (both

Theorem 4.2.3 and the results from [83, 84, 85]) require a bound on J that is imposed

by the denseness assumption: they need (r0 + Jrnew)2sµ ≤ 0.09n. All results for PCP

need a bound on rmat. Under our model of subspace change, rmat is at most r0 + Jrnew
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with the bound being tight and hence the PCP results also need a bound on J . Of

course, even for Theorem 4.2.8, J does affect bounds on other quantities: the result

needs tj+1 − tj > d > Kα + (ϑ + 3)α where α is an algorithm parameter that depends

linearly on log J . Thus, for any given value of J , the delay between subspace change

times, tj+1− tj, and the duration for which the eigenvalues along the new directions need

to be small (quantified in (4.1)), d, need to grow as log J .

Assumptions on how often the outlier support Tt needs to change. An

important advantage of our work over PCP and other batch methods is that we allow

more correlated changes of the set of outliers over time. From the assumption on Tt, it

is easy to see that we allow the number of outliers per row of L to be O(tmax), as long

as the sets follow Model 41. This is the same as what our previous results [83, 84, 85]

also allowed. On the other hand, the PCP results from [33, 94] need this number to be

O( tmax

rmat
) which is stronger. The PCP result from [32] needs that the set ∪tmax

t=1 Tt should

be generated uniformly at random which is even stronger.

Other assumptions. The above advantages are obtained because we use extra

assumptions on `t. We assume (i) accurate knowledge of the initial subspace (or available

outlier free data from which this can be obtained), (ii) slow subspace change as quantified

by (4.1) and the lower bound on the delay between subspace change times, and (iii) for

a period of time after the previous subspace change has stabilized, we assume that the

eigenvalues along the various subspace directions can be clustered into a few clusters. The

result of [85] required (i) and (ii) but not (iii). On the other hand, the PCP results [32, 33,

94] do not need any of the above. But they need other extra assumptions. They require

denseness of the right singular vectors of L and a bound on the maximum absolute entry

of the matrix UV ′ where U is the matrix of left singular vectors of L and V is the matrix

1In a period of length α, the set Tt can occupy index i for at most ρβ time instants, and this pattern
is allowed to repeat every α time instants. So an index can be in the support for a total of ρβ tmax

α
time instants and the model assumes ρβ ≤ 0.0001α

ρ for a constant ρ. Thus an index i can be part of the

support Tt for at most 0.0001
ρ tmax ∈ O(tmax) time instants.
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of its right singular vectors. In our notation range(U) = range([P0, P1,new, . . . PJ,new]).

We assume denseness of U but not of the right singular vectors.

Setting algorithm parameters. Our result needs five algorithm parameters to be

appropriately set. Some of these require knowing at least an upper bound on the model

parameters. Our result needs to know upper bounds on γ, γnew, r0, r, rnew, b, and g+.

The PCP results need this for none [32] or at most one [33, 94] algorithm parameter. We

briefly explain in Sec. 4.8.1 how to set algorithm parameters automatically for practical

experiments.

Other work. A recent work that uses knowledge of the initial subspace estimate

but performs recovery in a piecewise batch fashion is modified-PCP [97]. Like PCP, the

result for modified PCP also needs uniformly randomly generated support sets which is

stronger than what we need. But, like PCP, it does not need the other extra assumptions

that ReProCS needs. Another somewhat related work is the algorithm and correctness

result of Feng et al. [66] on online PCA with contaminated data. This does not model

the outlier as a sparse vector but defines anything that is far from the data subspace as

an outlier.

4.3 Automatic ReProCS-cPCA

The automatic ReProCS-cPCA algorithm is summarized in Algorithm 4. It proceeds

as follows. It begins by estimating the initial subspace as the top r0 left singular vectors

of [m1,m2, . . . ,mttrain
]. Let P̂t denote the basis matrix for the subspace estimate at time

t. At time t, if the previous subspace estimate, P̂t−1, is accurate enough, because of the

“slow subspace change” assumption, projecting mt = xt + `t + wt onto its orthogonal

complement nullifies most of `t. Specifically, we compute yt := Φtmt where Φt :=

I − P̂t−1P̂t−1
′. Clearly, yt = Φtxt + bt where bt := Φt`t + Φtwt and it can be argued

that ‖bt‖2 is small: ‖Φt`t‖2 is small due to the slow subspace change assumption and
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‖wt‖2 ≤ εw. Thus recovering xt from yt becomes a traditional sparse recovery problem in

small noise [12]. We recover xt by l1 minimization with the constraint ‖yt −Φtx‖2 ≤ ξ

and estimate its support by thresholding using a threshold ω. We use the estimated

support, T̂t, to get an improved debiased estimate of xt, denoted x̂t, by least squares (LS)

estimation on T̂t. We then estimate `t as ˆ̀
t = mt − x̂t. By the denseness assumption

given in Model 6, it can be argued that the restricted isometry constant (RIC) of Φt

will be small. Under the theorem’s assumptions, we can bound it by 0.14. This ensures

that a sparse xt is indeed accurately recoverable from yt. With the support estimation

threshold ω set as in Theorem 4.2.8, it can be argued that the support will be exactly

recovered, i.e., T̂t = Tt. Let et := `t − ˆ̀
t. With this, it is clear that et = (x̂t − xt)−wt

satisfies

et = ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′bt −wt = ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′Φt(`t + wt)−wt. (4.4)

Using the bound on the RIC of Φt, clearly ‖(Φt)Tt
′(Φt)

−1
Tt ‖2 ≤ (1− 0.14)−1 < 1.2. Thus,

‖et‖2 ≤ 1.2‖bt‖2 + εw, i.e., it is small too. In other words, `t is accurately recovered.

The estimates ˆ̀
t are used in the subspace estimation step which involves (i) detecting

subspace change; (ii) K steps of projection-PCA, each done with a new set of α frames

of ˆ̀
t, to get an accurate enough estimate of the newly added subspace; and (iii) cluster

PCA to delete the old subspace by re-estimating the current subspace. At the end of the

projection PCA step, the estimated subspace dimension is at most r + rnew, and after

cluster PCA, it comes down to at most r.

Subspace update. In the subspace update step, the algorithm switches between the

“detect” phase, the “pPCA” phase and the “cPCA” phase. It starts in the “detect”

phase. When a subspace change is detected, i.e. at t = t̂j, it enters the “pPCA” phase.

After K iterations of projection-PCA, i.e. at t = t̂j + Kα, the new subspace has been

accurately estimated. At this time, it enters the “cPCA” phase. At t = t̂j+Kα+(ϑ+1)α,

cluster PCA is done. At this time, it enters the “detect” phase again and remains in

it until the next subspace change is detected. We detect the j-th subspace change as
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follows. Let P̂∗ := P̂t̂j−1+Kα+(ϑ+1)α. We detect change by comparing the eigenvalues

of 1
α

∑
t(I − P̂ ∗P̂ ∗′)ˆ̀tˆ̀

′
t(I − P̂ ∗P̂ ∗′) to a chosen threshold at every t = uα when the

algorithm is in the “detect” phase.

Projection-PCA (p-PCA). We use projection-PCA to estimate the newly added

subspace. The reason this cannot be done using standard PCA is as follows [44]. Let
∑

t

denote a sum over an α length time interval. Because of how `t is recovered, the error,

et, in the estimate of `t, ˆ̀
t, is correlated with `t. This is evident from (4.4). Due to this,

the dominant terms in the perturbation seen by standard PCA, 1
α

∑
t
ˆ̀
t
ˆ̀
t
′ − 1

α

∑
t `t`t

′,

are 1
α

∑
t `tet

′ and its transpose2. Thus, when the condition number of Cov(`t) is large,

it is not possible to argue that the perturbation will be small compared to the smallest

eigenvalue of Cov(`t). With a large perturbation, either the sin θ theorem [95] (that

bounds the subspace error between the eigenvectors of the true and estimated sample

covariance matrices) cannot be applied or it gives a very large and useless bound.

Projection-PCA addresses the above issue as follows. Consider the j-th subspace

change. Let P ∗ := Ptj−1
, Pnew := Ptj ,new, and P̂∗ := P̂t̂j−1+Kα+(ϑ+1)α. Denote the time

at which this change is detected by t̂j. As explained in [85], it is easy to show that, whp,

tj ≤ t̂j ≤ tj+2α. After t̂j we use SVD on K different sets of α frames of the ˆ̀
t’s projected

orthogonal to P̂∗ to get K estimates of the new subspace range(P new). We get the k-th

estimate, P̂new,k, as the left singular vectors of (I− P̂∗P̂∗′)[ˆ̀t̂j+(k−1)α+1, . . . ,
ˆ̀
t̂j+kα

] with

singular values above a threshold. After each projection-PCA step, we update P̂t as

P̂t = [P̂∗ P̂new,k]. This ensures that the error et is smaller for the next projection-PCA

interval compared to the previous one and hence the subspace estimates also improve

with each iteration. The above is done K times with K chosen so that, by t = t̂j +Kα,

the error in estimating the new subspace is below rnewζ, which ensures SEt ≤ rζ+ rnewζ.

Cluster PCA for deleting directions by re-estimating the subspace. The next step

is to delete the subspace range(Pj,old) from P̂t. The goal of doing this is to reduce the

2When `t and et are uncorrelated and one of them is zero mean, it can be argued by law of large
numbers that, whp, these two terms will be close to zero and 1

α

∑
t etet

′ will be the dominant term.
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subspace error from (r+rnew)ζ to rζ. The simplest way to do this would be to re-estimate

range(Pt) by standard PCA, i.e. compute the eigenvectors of 1
α

∑t=t̂j+Kα+α

t=t̂j+Kα+1
ˆ̀
t
ˆ̀′
t with

eigenvalues above a threshold. However, since `t and et are correlated, this will cause a

problem similar to the one described above. It will work only if the condition number

of Cov(`t) is small. This is impractical though since we assume that `t can be large but

structured noise. Hence we re-estimate the subspace by developing a generalization of

the projection-PCA idea that we call cluster PCA (cPCA). This relies on the clustering

assumption given in Model 8.

cPCA proceeds as follows. We first estimate the clusters as follows. We compute

the empirical covariance matrix of ˆ̀
t’s after the new subspace is accurately estimated:

Σ̂sample = 1
α

∑t=t̂j+Kα+α

t=t̂j+Kα+1
ˆ̀
t
ˆ̀′
t and obtain its EVD. Let λ̂i denote its i-th largest eigenvalue.

To get the first cluster Ĝj,1, we start with the index of the first (largest) eigenvalue and

keep adding indices of the smaller eigenvalues to it until λ̂1

λ̂i+1
> ĝ+ but λ̂1

λ̂i
≤ ĝ+ or

until the next eigenvalue λ̂i+1 < 0.25λ̂−train. We set Ĝj,1 = {1, 2, . . . i}. To get the second

cluster we repeat the same procedure but starting with the (i + 1)-th eigenvalue. We

repeat this until there is no eigenvalue larger than 0.25λ̂−train. Observe that ĝ+ is set to

a value that is a little larger than g+ (see Theorem 4.2.8). This is needed to allow for

the fact that λ̂i is not equal to the i-th eigenvalue of Λ(j) but is within a small margin

of it. For the same reason, we need to also use a “zeroing” threshold of 0.25λ̂−train (notice

that Σ̂sample is not exactly low rank). This, along with appropriately setting ĝ+, and

with using the separation condition from Model 8 ensures that, whp, all the clusters are

correctly recovered.

LetGj,k := (Pj)Ĝj,k . Next, we estimate the subspace corresponding to the first cluster,

range(Gj,1) by standard PCA on [ˆ̀t̂j+(K+1)α+1, . . . ,
ˆ̀
t̂j+(K+1)α+α], i.e., by computing its

top |Ĝj,1| left singular vectors. Since the cluster’s condition number is small (bounded by

g+), this works. Denote the basis for the estimated subspace by Ĝj,1. To estimate the

subspace corresponding to the second cluster, we project the next set of α ˆ̀
t’s orthogonal
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to Ĝj,1, followed by standard PCA to compute the top |Ĝj,2| left singular vectors [44]. To

estimate the k-th cluster’s subspace, we do a similar thing but with projecting orthogonal

to the estimated subspace corresponding to the previous k − 1 clusters [44].

4.4 Proof Outline for Theorem 4.2.8 and Corollary 4.2.11

The proof proceeds by induction. Consider the j-the subspace change interval. Let

P ∗ := Ptj−1
= Ptj−1, Pnew := Ptj ,new, and P̂∗ := P̂t̂j−1+Kα+(ϑ+1)α. Assume that there

have been no (false) change detects in the interval [t̂j−1 + Kα + (ϑ + 1)α + 1, tj − 1].

Thus, P̂tj−1 = P̂∗. Assume also that the subspace, range(Ptj−1) = range(P∗), has been

accurately recovered, i.e., SEtj−1 = dif(P̂∗,P∗) ≤ rζ. Conditioned on this, we use the

following steps to show that, whp, the same conclusions hold at t = tj+1 − 1 as well.

1. First, we show that the subspace change is detected within a short delay of tj. We

show that tj ≤ t̂j ≤ tj + 2α whp. This is done in Lemma 4.5.28.

2. At t = t̂j +α, the first projection-PCA step is done to get the first estimate, P̂new,1,

of range(Pnew). This computes the top singular vectors of [ˆ̀t̂j+1,
ˆ̀
t̂j+2, . . . ,

ˆ̀
t̂j+α

]

projected orthogonal to range(P̂∗). In the interval [tj, t̂j +α−1], the new subspace

is not estimated at all, i.e., P̂t = P̂∗ while Pt = [P∗ Pnew] and so SEt ≤ 1.

Thus, the noise seen by the projected sparse recovery step, bt, is the largest in

this interval. Hence the error et is also the largest for the ˆ̀
t’s used in the first

projection-PCA step. However, due to slow subspace change, even this error is not

too large. Because of this, and because Pnew is dense, we can argue that P̂new,1 is a

good estimate. We show that dif([P̂∗ P̂new,1],Pnew) ≤ 0.19 < 1. Thus, at this time,

SEt = dif([P̂∗ P̂new,1], [P∗ Pnew]) ≤ rζ + 0.19. This is shown in Lemmas 4.5.29 and

4.5.21.

3. At t = t̂j + kα, for k = 1, 2, . . . , K, the k-th projection-PCA step is done to get

the k-th estimate, P̂new,k. This computes the top singular vectors of [ˆ̀t̂j+(k−1)α+1,
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ˆ̀
t̂j+(k−1)α+2, . . . ,

ˆ̀
t̂j+kα

] projected orthogonal to range(P̂∗). After the first projection-

PCA step, P̂t = [P̂∗ P̂new,1] and this reduces bt and hence et for the ˆ̀
t’s in the

next α frames. This fact, along with the fact that et is approximately sparse with

support Tt and Tt follows Model 4, in turn, imply that the perturbation seen by

the second projection-PCA step is even smaller. So P̂new,2 is a more accurate

estimate of range(P new) than P̂new,1. Repeating the same argument, the third es-

timate is even better and so on. Under the theorem’s assumptions, we can show

that dif([P̂∗ P̂new,k],Pnew) ≤ 0.19 · 0.1k−1 + 0.15rnewζ and so, at t = t̂j + kα,

SEt ≤ rζ + 0.19 · 0.1k−1 + 0.15rnewζ. This is shown in Lemmas 4.5.29 and 4.5.21.

The most important idea here is to use the fact that et is approximately supported

on Tt (shown in Lemma 4.5.25) and the support change model on Tt (this is used

in Lemma 4.5.22).

4. The above is repeated K times with K set to ensure that, by t = t̂j + Kα,

dif([P̂∗ P̂new,K ],Pnew) ≤ rnewζ and so, at this time, SEt ≤ (r + rnew)ζ.

5. In the interval [t̂j + Kα + 1, t̂j + Kα + (ϑ + 1)α], cluster PCA is done to delete

range(Ptj ,old). At the end of this step, we can show that the bound on SEt has

reduces from (r+ rnew)ζ to rζ. This is proved in Lemmas 4.5.30, 4.5.31 and 4.5.21.

6. Finally, we also argue that there are no (false) subspace change detects for any

t ∈ [t̂j +Kα + (ϑ+ 1)α + 1, tj+1 − 1]. This ensures that t̂j+1 ≥ tj+1. This is done

in Lemma 4.5.27.

To prove the theorem, we first show that the initial subspace is recovered accurately

enough, i.e., SEt ≤ rζ at t = ttrain + 1, whp. This is done in Lemma 4.5.20. Then,

repeating the above argument for each subspace change period, we can obtain the sub-

space error bounds of the theorem. We set ttrain and α to ensure that the probability of

the good events is at least 1− 3n−10. The sparse recovery error bounds can be obtained
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by using these bounds and quantifying the discussion of Sec. 4.3. This is done in Lemma

4.5.25.

The main part of the proof is the analysis of the projection-PCA steps (for subspace

addition) and the cluster PCA steps (for subspace deletion). We explain its key ideas

next. Assume for this approximate analysis that wt = 0 and that dif(P̂∗,P∗) = 0

(previous subspace is perfectly estimated). In the k-th projection-PCA step the goal is

to bound ζnew,k := dif([P̂∗, P̂new,k],Pnew) conditioned on “accurate recovery so far”. Here

“accurate recovery so far” means dif(P̂∗,P∗) ≈ 0 and ζnew,k−1 ≤ ζ+
new,k−1. Before k = 1,

there is no estimate of Pnew and thus we have ζnew,0 ≤ ζ+
new,0 = 1.

We first use the sin θ theorem [95] (Theorem C.1.3) to get a bound on ζnew,k. This is

done in Lemma 4.5.33. We then bound the terms in this bound using the matrix Azuma

inequality from [96] (Corollaries C.1.13 and C.1.14). This is done in Lemmas 4.5.34,

4.5.35 and 4.5.36. Using the sin θ theorem followed by using matrix Azuma for lower

bounding λmin( 1
α

∑
t(I − P̂∗P̂∗′)`t`

′
t(I − P̂∗P̂∗′)), we can conclude that

ζnew,k .
‖perturbation‖2

1
1−b2λ

−
new − ε− ‖perturbation‖2

.
2
∥∥ 1
α

∑
t(I − P̂∗P̂∗′)`te′t

∥∥
2

+
∥∥ 1
α

∑
t ete

′
t

∥∥
2

1
1−b2λ

−
new − ε− (2‖ 1

α

∑
t(I − P̂∗P̂∗′)`te′t

∥∥
2

+ 2
∥∥ 1
α

∑
t ete

′
t

∥∥
2
)

(4.5)

Here perturbation = 1
α

∑
t(I−P̂∗P̂∗′)ˆ̀tˆ̀

′
t(I−P̂∗P̂∗′)− 1

α

∑
t(I−P̂∗P̂∗′)`t`

′
t(I−P̂∗P̂∗′). S-

ince
∑

t(
ˆ̀
t
ˆ̀′
t−`t`′t) =

∑
t(`te

′
t+et`

′
t+ete

′
t), the bound used in the second inequality above

follows. The next task is to bound the two perturbation terms using the matrix Azuma

inequality. This is done in Lemma 4.5.36. As explained in Sec 4.3, under “accurate re-

covery so far”, it can be shown that et satisfies (4.4) and that
∥∥[(Φt)Tt

′(Φt)Tt ]
−1
∥∥

2
≤ 1.2.

This is proved in Lemma 4.5.25. Notice that, when wt = 0, et is exactly supported on

Tt. Using the expression for et, expanding `t in terms of ντ ’s, processing as explained in

Sec 4.6.1, and applying the matrix Azuma inequality, one can show that, whp,

∥∥ 1

α

t0+α−1∑
t=t0

(I− P̂∗P̂∗
′)`te

′
t

∥∥
2
≤ 4ε+

1

α

b2

1− b2
(rγ2) + LargeTermk
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where t0 = t̂j + (k− 1)α+ 1 is the first time instant of the k-th projection-PCA interval

and

LargeTermk :=

∥∥ 1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τPnewΛt,newP′new(I− P̂∗P̂∗
′ − P̂new,k−1P̂new,k−1

′)ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′∥∥

2
.

In the above, ε is very small (comes from applying Azuma for zero-mean terms). The

second term is also very small since 1/α ≤ (rnewζ)2. Thus, LargeTermk is the only

significant term. To bound it, for k = 1, we use the fact that P̂new,k−1 = P̂new,0 = [.]

and hence (I − P̂∗P̂∗′ − P̂new,k−1P̂new,k−1
′)Pnew ≈ Pnew and Pnew is dense. From Model

6,
∥∥Pnew

′ITt
∥∥

2
≤ 0.02. Thus, using

∥∥[(Φt)Tt
′(Φt)Tt ]

−1
∥∥

2
≤ 1.2 and slow subspace change,

(4.1), we get that, for k = 1,

∥∥ 1

α

t0+α−1∑
t=t0

(I − P̂∗P̂∗
′)`te

′
t

∥∥
2
.
∥∥LargeTerm1

∥∥
2
≤ 1

1− b2
1.2 · 0.02 · λ+

new

≤ 1

1− b2
1.2 · 0.02 · 3λ− = 0.072

1

1− b2
λ−.

For k > 1, we cannot show that (I − P̂∗P̂∗′ − P̂new,k−1P̂new,k−1
′)Pnew is dense3.

Thus we use a different approach. We apply the Cauchy-Schwartz inequality (Lemma

C.1.6) with X t :=
∑t

τ=t0
b2t−2τPnewΛt,newP′new(I− P̂∗P̂∗′− P̂new,k−1P̂new,k−1

′) and Y t :=

ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′, followed by using Model 4 on Tt to bound λmax( 1

α

∑t0+α−1
t=t0

Y tY
′
t).

It is easy to see that λmax(
1

α

t0+α−1∑
t=t0

X tX
′
t) ≤ max

t
‖X t‖2

2 and ‖X t‖2 ≤
1

1− b2
λ+

newζ
+
new,k−1

≤ 3ζ+
new,k−1

1

1− b2
λ−.

We bound λmax(
1

α

t0+α−1∑
t=t0

Y tY
′
t) by using Model 4 on support change. This is done in

Lemma 4.5.22. This lemma exploits the fact that
1

α

∑
t

Y tY
′
t =

1

α

∑
t

ITt([(Φt)Tt
′(Φt)Tt ]

−1)2

ITt
′ is a block-banded matrix and, for each block, the summation is not over α frames but

only over β frames with β being much smaller. For example, if Model 4 holds with ρ = 1,

3The partial result of [44] assumed that this holds and then used the above approach to get a
performance guarantee.
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this matrix is block diagonal; if it holds with ρ = 2, then it is block-tridiagonal and so

on. Thus, using ‖[(Φt)Tt
′(Φt)Tt ]

−1‖2 ≤ 1.2, we can show that λmax( 1
α

∑t0+α−1
t=t0

Y tY
′
t) ≤

1
α
ρ2β(1.2)2 ≤ 0.0001 · (1.2)2.

By Cauchy-Schwartz and the above bounds, we can conclude that, for k > 1,

∥∥ 1

α

t0+α−1∑
t=t0

(I − P̂∗P̂∗
′)`te

′
t

∥∥
2
.
∥∥LargeTermk

∥∥
2
≤
√

0.0001 · (1.2)2 · 3 · ζ+
new,k−1

1

1− b2
λ−

= 0.036 · ζ+
new,k−1

1

1− b2
λ−

Using an approach similar to the one outlined above one can also bound the ete
′
t

term. This is actually easier to bound because one does not need Cauchy-Schwartz. For

k = 1, we get

∥∥ 1

α

t0+α−1∑
t=t0

ete
′
t

∥∥
2
. ρ2β(1.2)2 · 0.022 1

1− b2
3λ− ≤ 0.0001 · 1.44 · 0.022 · 3 1

1− b2
λ−

< 0.00002
1

1− b2
λ−.

and for k > 1,

∥∥ 1

α

t0+α−1∑
t=t0

ete
′
t

∥∥
2
. ρ2β(1.2)2 · (ζ+

new,k−1)2 1

1− b2
3λ− ≤ 0.0001 · 1.44 · 3 · (ζ+

new,k−1)2 1

1− b2
λ−

< 0.075(ζ+
new,k−1)2 1

1− b2
λ−

Using the above bounds in (4.5) and using λ−new ≥ λ−, we can conclude that,

ζ+
new,1 . 0.19, ζ+

new,k .
2 · 0.036 · ζ+

new,k−1 + 0.075(ζ+
new,k−1)2

1− NumeratorTerm

Here NumeratorTerm refers to the expression from the numerator. From the above, it is

easy to see that ζ+
new,2 . 0.19 and, proceeding similarly, ζ+

new,k . 0.19. Using this to get a

loose bound on NumeratorTerm, we can conclude that ζ+
new,k . 0.1ζ+

new,k−1 ≤ 0.19·0.1k−1.

The above approximate analysis ignores the fact that range(P̂∗) 6= range(P∗). It also

ignores the unstructured noise term wt and the other small terms that come with each

application of matrix Azuma. With incorporating all this, and with using dif(P̂∗,P∗) ≤
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rζ (instead of zero), we can conclude that ζnew,k ≤ ζ+
new,k ≤ 0.19 · 0.1k−1 + 0.15rnewζ. By

picking K carefully, we get that ζnew,K ≤ rnewζ and thus SEt ≤ (r + rnew)ζ after the

K-the projection PCA step.

The analysis of cluster PCA is a significant generalization of the above ideas. The

slow subspace change assumption is replaced by the clustering assumption at various

places in its proof.

4.4.1 Novelty in proof techniques

This work has two key contributions - it analyzes ReProCS with the deletion step

(done via cluster PCA), and it obtains a complete result for ReProCS and ReProCS-

cPCA for the case when the `t’s are correlated over time.

While the overall proof structure described above is similar to that used in [85],

the proof approach for proving the “main lemmas” is quite different for the correlated

`t’s case. The first such difference is seen in Fact 4.5.26 which shows how to bound

‖(I − P̂t−1P̂t−1
′)`t‖2 for when `t is correlated over time. This is used to prove Lemma

4.5.25. The second and most significant difference is in proving the matrix-Azuma-based

lemmas for projection-PCA and for cluster PCA. These are proved in Sec 4.6 and 4.7.

The matrix Azuma inequality [96, Theorem 7.1] is significantly harder to apply than the

matrix Hoeffding [96]. There are two reasons for this. First we need to get the sums

of conditional expectations of quantities needed to apply this result in a form that can

be bounded easily. The simplest way of doing this can lead to loose bounds. To get

the desired bounds, we need to rewrite `t in terms of past νt’s and use the fact that

bα < (rnewζ) (is very small) and that
∑t

τ=t−α+1 b
t ≤ 1/(1 − b) ≤ 1/(1 − b0) < 1.12. In

words, the contribution of very old νt’s is negligible and the contribution due to the last

α νt’s is only slightly larger than that of one νt.

The third main difference is the analysis of the automatic cluster estimation step

and of the cluster PCA algorithm for deleting the subspace. The fact that the former
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is correct whp is shown in Lemma 4.5.30. This uses Lemma 4.5.38 and the separation

condition from Model 8 to show that, whp, the clusters obtained by using a threshold

of ĝ+ on the condition numbers of the eigenvalues of the empirical covariance matrix

computed with the ˆ̀
t’s are exactly the same as the true clusters defined in Model 8. The

analysis of cluster PCA (Lemma 4.5.31) relies on matrix-Azuma-based Lemmas 4.5.39,

4.5.40, and 4.5.41. These are new too and are proved using a significant generalization

of the approach used for analyzing the projection-PCA step.

4.5 Proof of Theorem 4.2.8 And Corollary 4.2.11

We first give the most general denseness assumption and the most general model on

Tt in Sec. 4.5.1 below. Next, we define quantities that will be used in the proofs in Sec.

4.5.2. The basic lemmas that are used several times in the proof are stated next in Sec.

4.5.3. The five main lemmas leading to the proof and the proof itself are given in Sec.

4.5.4. We then give the seven key lemmas that are used to prove the main lemmas in

Sec. 4.5.5, followed by the proofs of the main lemmas in Sec. 4.5.6. The proofs of the

key lemmas are the long ones and these are given in Sec. 4.6 and 4.7.

4.5.1 Generalizations

Consider the denseness assumption in Model 6. This can be generalized as follows.

Model 9. For a basis matrix P , define the (un)denseness coefficient

κs(P ) := max
|T |≤s

‖IT ′P ‖2

Assume that

κ2s,∗ := max
j
κ2s(P tj) ≤ 0.3 and κ2s,new := max

j
κ2s(P tj ,new) ≤ 0.02. (4.6)

Lemma 4.5.1. Model 6 is a special case of Model 9.
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Proof. Recall Model 6. For any basis matrix P, [κ1(P)]2 = maxi ‖P′Ii‖2
2. Using the

triangle inequality, it is easy to show that κs(P ) ≤ √sκ1(P ) [44]. Using this, the claim

follows.

The proof of Theorem 4.2.8 only uses (4.6) for the denseness assumption.

The reason for defining the (un)denseness coefficient κs(P) as above is the following

lemma from [44].

Lemma 4.5.2 ([44]). For a basis matrix P , δs(I− PP ′) = (κs(P ))2.

Next consider the support change model given in Model 4. This is one special case

of the most general model that works for our result. This model was introduced in [85].

We explain it here. What we need to prevent is Tt occupying the same indices for too

many time instants in a given interval. If Tt does not change ‘enough’ in a time interval

of length α, we will be unable to see enough entries of a given index of `t in order to be

able to accurately fill in the missing ones. The following model quantifies ‘enough’ for

our purposes. The number of time instants for which an index is part of Tt is determined

both by how often this set changes, and by how much it moves when it changes. The

latter is parameterized by ρ which controls how much the set moves when it changes.

For example ρ = 1 would require that distinct sets be disjoint, and ρ = 2 would mean

that at least half of the set is displaced whenever it changes. The parameter h+ ∈ (0, 1)

represents the maximum fraction of time for which the set remains in a given area in

a time interval of length α. The smaller h+, the more frequently the set will need to

change in order to satisfy the model. Our result requires a bound on the product ρ2h+.

Model 10. Let ρ be a positive integer. Split [1, tmax] into intervals of length α. Use

Ju := [(u − 1)α + 1, uα] to denote the u-th interval. For a given interval, Ju, let T(i),u

for i = 1, . . . , lu be mutually disjoint subsets of {1, . . . , n} and let J(i),u, i = 1, 2, . . . , lu be
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a partition4 of the interval Ju so that

for all t ∈ J(i),u, Tt ⊆ T(i),u ∪ T(i+1),u ∪ · · · ∪ T(i+ρ−1),u (4.7)

Define

hu
(
α; {T(i),u}i=1,...,lu , {J(i),u}i=1,...,lu

)
:= max

i=1,2,...lu

∣∣J(i),u

∣∣ (4.8)

and define h∗u(α) as the minimum over all choices of T(i),u and over all choices of the

partition J(i),u.

h∗u(α) := min
all choices of mutually disjoint T(i),u, i = 1, 2, . . . lu

and all choices of mutually disjoint J(i),u, i = 1, 2, . . . lu

so that ∪lui=1J(i),u = Ju and (4.7) holds

hu
(
α; {T(i),u}i=1,...,lu , {J(i),u}i=1,...,lu

)

(4.9)

Assume that |Tt| ≤ s and that for all u = 1, . . . ,
⌈
tmax

α

⌉
,

h∗u(α) ≤ h+α with h+ ≤ 0.0001

ρ2
.

In the above model, h∗u(α) provides a bound on how long Tt remains in a given “area”,

T(i),u ∪ T(i+1),u ∪ · · · ∪ T(i+ρ−1),u during the interval Ju, for the best allocation of Tt’s to a

given “area” and the best choice of the “areas.”

Notice that (4.7) can always be trivially satisfied by choosing lu = 1, T(1),u =

{1, . . . , n} and J(1),u = Ju, but this will give hu(α; .) = α and hence is not a good

choice. This is why we take a minimum over all choices.

Lemma 4.5.3. [[85]] Model 4 is a special case of Model 10 above with h+ = β
α

.

4.5.2 Definitions

Remark 4.5.4. Recall that ϑ is the maximum number of clusters from Model 8. For

ease of notation, henceforth, we will assume that there are ϑ clusters for all j. If ϑj < ϑ,

it will just mean that the last (ϑ− ϑj + 1) clusters are empty.

4i.e. the J(i),u’s are mutually disjoint intervals and their union equals Ju
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Definition 4.5.5. Define bt := Φtmt − Φtxt = Φt(`t + wt). This is the “noise” seen

by the projected sparse recovery step of the algorithm.

Define et to be the error made in estimating `t. That is et := `t− ˆ̀
t. Thus, from the

algorithm, et = (x̂t − xt)−wt

Definition 4.5.6. Define the intervals

Ju := [(u− 1)α + 1, uα].

Define uj to be the u such that tj ∈ Ju. That is uj :=
⌈
tj
α

⌉
. For the purposes of describing

events before the first subspace change, let u0 := 0.

Define ûj :=
t̂j
α
. Notice from the algorithm that this will be an integer, because detec-

tion only occurs when t mod α = 0. We will show that, under appropriate conditioning,

whp, ûj = uj or ûj = uj + 1.

For the cluster-PCA step, define the following intervals for k = 0, 1, 2, . . . ϑ.

Ĩj,k := [t̂j + (K + 1)α + (k − 1)α + 1, t̂j + (K + 1)α + kα]

Notice that Ĩj,0 is where the clusters are determined, and Ĩj,k is where cluster k is recov-

ered.

Definition 4.5.7. Define P (j) := P tj ,

P (j),∗ := P (j−1) = P tj−1 and P (j),new := P tj ,new for j = 1, . . . , J

at,∗ := P(j),∗
′νt and at,new := P(j),new

′νt for t ∈ [tj, tj+1).

Notice that at,∗ is a vector of length rj−1, whose last (rj−1 − rj,old) entries are zeroes.

Also define

P (j),add := [P (j),∗ P (j),new]

Thus, for t ∈ [tj, tj + d], νt can be written as

νt = P(j)at = [P(j),∗ P(j),new]

 at,∗
at,new


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and Cov(νt) = Σt can be rewritten as

Σt = P(j)ΛtP(j)
′ =
[
P (j),∗ P (j),new

] Λt,∗ 0

0 Λt,new


 P (j),∗

′

P (j),new
′


Notice that the last (rj−1 − rj,old) diagonal entries of Λt,∗ are zeroes.

Remark 4.5.8. From Model 5, P (j),∗ is orthogonal to P (j),new.

Definition 4.5.9. For j = 1, 2, . . . , J and k = 1, 2, . . . , K define

1. P̂(j),∗ := P̂t̂j−1+Kα+(ϑ+1)α. If all subspace changes are correctly detected, this is the

final estimate of P (j),∗ = P (j−1) and P̂(j),∗ = P̂tj−1. Let P̂(1),∗ := P̂ttrain
(the initial

estimate).

2. P̂(j),new,0 := [.] and P̂(j),new,k := P̂t̂j+kα,new
. This is the kth estimate of P (j),new

(again, conditioned on correct change time detection).

3. P̂(j),add := [P̂(j),∗ P̂(j),new,K ] is the final estimate of P (j),add.

Notice from the algorithm that,

1. P̂t,∗ = P̂(j),∗ for all t ∈ [t̂j−1 +Kα + (ϑ+ 1)α, t̂j +Kα + (ϑ+ 1)α− 1]

2. P̂t,new = P̂(j),new,k−1 for all t ∈ Jûj+k for k = 1, 2, . . . K, P̂t,new = P̂(j),new,K for

t ∈ [t̂j +Kα, t̂j +Kα + (ϑ+ 1)α− 1], and P̂t,new = [.] at all other times.

3. At all times, P̂t = [P̂t,∗ P̂t,new].

4. P̂t−1,∗ ⊥ P̂t,new at t = t̂j + kα and so P̂(j),∗ ⊥ P̂(j),new,k

Definition 4.5.10. Define Gj,k := (Ptj)Gj,k for k = 1, 2, . . . , ϑ. The clusters Gj,k were

defined in Model 8. Thus P(j+1),∗ = P(j) = Ptj = [Gj,1, Gj,2, . . . Gj,ϑ].

Recall that Ĝj,k is obtained in the cluster-PCA routine of Algorithm 4. From the

definition of P̂(j),∗, P̂(j+1),∗ = [Ĝj,1, Ĝj,2, . . . Ĝj,ϑ].
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Definition 4.5.11. Define

1. ζj,∗ := dif(P̂ (j),∗,P (j),∗)

2. ζj,new,k := dif([P̂(j),∗ P̂(j),new,k],P (j),new)

3. ζj,add := dif(P̂(j),add,P (j),add)

4. ζ̃j,k := dif([Ĝj,1 . . . Ĝj,k],Gj,k).

Using the previous definition, clearly ζj+1,∗ ≤
∑ϑ

k=1 ζ̃j,k.

Definition 4.5.12. Define

1. ζ+
j,∗ := rζ

2. ζ+
j,new,0 := 1, ζ+

j,new,k :=
bH,k

bA − bA,⊥ − bH,k

for k = 1, 2, . . . , K where bA, bA,⊥, and

bH,k are defined in Lemmas 4.5.34, 4.5.35, and 4.5.36 respectively. Their expres-

sions use ε given by (4.14).

3. ζ+
j,add := (r + rnew)ζ.

4. ζ̃+
k :=

bH̃,k

bÃ,k − bÃ,k,⊥ − bH̃,k

where bH̃,k, bÃ,k, and bÃ,k,⊥ are defined in Lemmas

4.5.39, 4.5.40, and 4.5.41 respectively.

We will show that these are high probability upper bounds on ζj,∗, ζj,new,k, ζj,add, and ζ̃j,k

under appropriate conditioning. We should point out that ζ+
j,∗, ζ

+
j,add, and ζ+

j,new,k do not

actually depend on j. However, when analyzing Algorithm 4 without the c-PCA step,

they do depend on j.

Definition 4.5.13. Define the random variable

Xu := {{ν1,ν2, . . .νuα}, {Tt}t=1,2,...tmax}.

This is the random variable that we condition on (with appropriate choice of u) when

analyzing the subspace update steps - detection or projection-PCA or cluster-PCA.
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Definition 4.5.14. Recall from Algorithm 4 that

thresh =
λ̂−train

2
.

Also, recall the definition of Du from Algorithm 4. For j = 1, . . . , J , and for a = uj or

a = uj + 1, define the following events

• DETa
j := {ûj = a}

• PPCAa
j,k :=

{
ûj = a and rank(P̂(j),new,k) = rj,new and ζj,new,k ≤ ζ+

j,new,k

}
for k =

1, . . . , K,

• CLUSTERa
j :=

{
ûj = a and Ĝj,k = Gj,k for k = 1, . . . , ϑ

}
• CPCAa

j,k :=
{
ûj = a and ζ̃j,k ≤ ζ̃+

k

}
for k = 1, . . . , ϑ,

• NODETSaj :=
{
ûj = a and λmax

(
1
α
DuDu

′) < thresh for all u ∈ [ûj + K + (ϑ +

1) + 1, uj+1 − 1]
}

• Γ0,end := {ζ1,∗ ≤ r0ζ} ∩
{
λmax

(
1
α
DuDu

′) < thresh for all u ∈ [1, u1 − 1]
}

• Γaj,0 := Γj−1,end ∩DETa
j

• Γaj,k := Γaj,k−1 ∩ PPCAa
j,k for k = 1, 2, . . . K

• Γ̃aj,0 := Γaj,K ∩ CLUSTERa
j

• Γ̃aj,k := Γ̃aj,k−1 ∩ CPCAa
j,k for k = 1, 2 . . . ϑ

• Γj,end :=
(

Γ̃
uj
j,ϑ ∩ NODETS

uj
j

)
∪
(

Γ̃
uj+1
j,ϑ ∩ NODETS

uj+1
j

)
We misuse notation as follows. Suppose that a set Γ is a subset of all possible values

that a r.v. X can take. For two r.v.s’ {X, Y }, when we need to say “X ∈ Γ and Y

can be anything” we will sometimes misuse notation and just say “{X, Y } ∈ Γ.” For

example, we sometimes say Xuj ∈ Γj,end. This means Xuj−1 ∈ Γj,end and at for t ∈ Juj
are unconstrained.
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Definition 4.5.15. Define

1. Let Dj,new := (I − P̂(j),∗P̂(j),∗′)P (j),new
QR
= Ej,newRj,new denote its reduced QR

decomposition, i.e. let Ej,new be a basis matrix for range (Dj,new) and let Rj,new =

Ej,new
′Dj,new.

2. Let Ej,new,⊥ be a basis matrix for the orthogonal complement of range(Ej,new). To

be precise, Ej,new,⊥ is an n×(n−rj) basis matrix so that [Ej,new Ej,new,⊥] is unitary.

3. For u = ûj + k for k = 1, . . . , K, define Au, Au,⊥, Au as

Au :=
1

α

∑
t∈Ju

Ej,new
′(I− P̂ (j),∗P̂ (j),∗

′)`t`t
′(I− P̂ (j),∗P̂ (j),∗

′)Ej,new

Au,⊥ :=
1

α

∑
t∈Ju

Ej,new,⊥
′(I− P̂ (j),∗P̂ (j),∗

′)`t`t
′(I− P̂ (j),∗P̂ (j),∗

′)Ej,new,⊥

and let

Au :=

[
Ej,newEj,new,⊥

]Au 0

0 Au,⊥


 Ej,new

′

Ej,new,⊥
′


4. For u = ûj + k for k = 1, . . . , K, define Mu and Hu as

Mu = (I− P̂ (j),∗P̂ (j),∗
′)

(
1

α

∑
t∈Ju

ˆ̀
t
ˆ̀
t
′
)

(I− P̂ (j),∗P̂ (j),∗
′)

and

Hu := Mu −Au

Remark 4.5.16. Recall the definition of Du from Algorithm 4. Conditioned on Γ
ûj
j,0, for

u = ûj + k, k = 1, 2, . . . , K, P̂uα−1,∗ = P̂(j),∗ and thus, for these values of u

1

α
DuDu

′ = Mu.

For these u’s Mu is the matrix whose eigenvectors with eigenvalue above thresh form

P̂(j),new,k (see step 3b of Algorithm 4). In other words, Mu has eigendecomposition

Mu
EVD
=

[
P̂(j),new,k P̂(j),new,k,⊥

]Λ̂u 0

0 Λ̂u,⊥


 P̂(j),new,k

′

P̂(j),new,k,⊥′

 .
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Definition 4.5.17. Define

1. κs,∗ := maxj κs(P (j),∗) and κs,new := maxj κs(P (j),new).

2. κ+
s,∗ := 0.3 and κ+

s,new := 0.0215. As we will show later in Lemma 4.5.23, κ+
s,new

upper bounds ‖ITt ′Dj,new‖2 under appropriate conditioning.

3. φ+ := 1.2. As we will show later in Lemma 4.5.25, this upper bounds φt :=

‖[(Φt)Tt
′(Φt)Tt ]

−1‖2 under appropriate conditioning.

Definition 4.5.18. Define Φ(j),0 := (I − P̂(j),∗P̂(j),∗′) and Φ(j),k := (I − P̂(j),∗P̂′(j),∗ −

P̂(j),new,kP̂(j),new,k
′) for k = 1, 2, . . . K.

Thus for t ∈ [tj, t̂j + α] (before the first proj-PCA step), Φt = Φ(j),0, for t ∈ Jûj+k
(during interval used for k-th proj-PCA step), Φt = Φ(j),k−1, for t ∈ [t̂j +Kα, t̂j +Kα+

(ϑ+1)α] (after K-th proj-PCA step), Φt = Φ(j),K and for t ∈ [t̂j+Kα+(ϑ+1)α, tj+1−1]

(after cluster-PCA step), Φt = Φ(j+1),0.

Remark 4.5.19. The proof uses Model 10 on Tt. By Lemma 4.5.3, Model 4 is a special

case of it. In particular, this means that (a) Model 4 also implies ρ2h+ ≤ 0.01 and (b)

Model 4 also allows us to use the support change lemma, Lemma 4.5.22. This lemma

and the sparse recovery lemma, Lemma 4.5.25, are used to get bounds on quantities

containing et in the proof of Lemma 4.5.36.

4.5.3 Basic lemmas

Lemma 4.5.20. Consider Algorithm 4. Under Theorem 4.2.8 assumptions,

dif(P̂ttrain
,Pttrain

) ≤ r0ζ and

0.8λ− ≤ λ̂−train ≤ 1.2λ−

with probability at least 1− n−10.
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This lemma follows in a fashion analogous to the proof of the p-PCA lemma, Lemma

4.5.29 (or actually just the proof of Lemma 4.5.34 which is one of the lemmas used to

prove Lemma 4.5.29). Its proof is in Appendix C.2.

Lemma 4.5.21. [Bounds on bA, bA,⊥, bH,k, ζj,new,k and ζ̃+
k ] Consider the quantities de-

fined in Defnition 4.5.11. Under the conditions of Theorem 4.2.8,

1. bA − bH,1 ≥ 0.8λ− > 0.5λ̂−train = thresh and bA,⊥ + bH,1 ≤ 0.2λ− < 0.35λ̂−train <

thresh.

2. ζ+
new,0 = 1, ζ+

new,1 ≤ 0.19, ζ+
new,k ≤ 0.19 · 0.1k−1 + 0.15rnewζ for all k ≥ 1.

3. ζ̃+
k ≤ rj,kζ where rj,k = |Gj,k|.

This lemma essentially follows using simple algebra. We provide the proof in Ap-

pendix C.3. The proof of the second part is similar to that of Lemma 6.14 of [85].

Lemma 4.5.22. [Support change lemma [85, Lemma 5.3]] Let st = |Tt|. Consider a

sequence of st × st symmetric positive-semidefinite matrices At such that ‖At‖2 ≤ σ+

for all t. Assume that the Tt obey Model 10. Let M =
∑
t∈Ju

ITtAtITt
′ be an n× n matrix

(I is an n× n identity matrix). Then

‖M‖2 ≤ ρ2h+ασ+ ≤ 0.0001σ+α

Lemma 4.5.23. [[85]] Assume that the assumptions of Theorem 4.2.8 hold. Conditioned

on Xûj+k−1, for Xûj+k−1 ∈ Γ
ûj
j,k−1, for ûj = uj or ûj = uj + 1,

‖IT ′Dj,new‖2 ≤ κ+
s,new := .0215 (4.10)

for all T such that |T | ≤ s.

The following summarizes many simple facts.

Fact 4.5.24.
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1. Observe that Γaj,0 both for a = uj and a = uj + 1 implies that uj ≤ ûj ≤ uj + 1.

Thus, since t̂j = ûjα, in both cases, tj ≤ t̂j ≤ tj+2α. So with the model assumption

that d ≥ (K + 2)α, we have that Jûj+k ⊆ [tj, tj + d] for k = 1, 2, . . . , K, i.e., for

all the projection-PCA intervals, (4.1) holds and we can bound ‖at,new‖∞ by γnew.

2. Since, Γaj,K ⊆ Γaj,0, Γaj,K also implies that tj ≤ t̂j ≤ tj + 2α. This along with

d2 > (ϑ + 3)α implies that all the intervals used for the cluster-estimation or the

cluster-PCA steps are subsets of the interval in which the clustering assumption

holds, i.e., [t̂j +Kα + 1, t̂j +Kα + (ϑ+ 1)α] ⊆ [tj +Kα + 1, tj +Kα + d2].

3. Lemma 4.5.21, item 3, implies that, if ζ̃j,k ≤ ζ̃+
k for k = 1, . . . , ϑ, then ζj+1,∗ :=

dif(P̂(j+1),∗,P (j+1),∗) ≤
∑ϑ

k=1 ζ̃j,k ≤
∑ϑ

k=1 rj,kζ = rjζ ≤ ζ+
j+1,∗. This follows by

triangle inequality and the fact that P̂(j+1),∗ = [Ĝj,1, Ĝj,2, . . . Ĝj,ϑ] and P(j+1),∗ =

P(j) = [Gj,1, Gj,2, . . . Gj,ϑ].

4. Thus the event Γj,end implies ζj+1,∗ ≤ ζ+
j+1,∗. Equivalently, Γj−1,end implies ζj,∗ ≤ ζ+

j,∗

5. Thus, the event Γaj,0 implies ζj,∗ ≤ ζ+
j,∗ = rζ for a = uj or a = uj+1.

6. Thus the event Γaj,k−1 also implies this.

7. Lemma 4.5.21, item 2, and the choice of K in the theorem imply that ζ+
j,new,K ≤

rnewζ.

8. Using the previous two items, the event Γ
ûj
j,K, both for ûj = uj and ûj = uj + 1,

implies that dif(P̂(j),add,P (j),add) ≤ ζ+
j,∗ + rnewζ = ζ+

j,add.

9. 1
α
≤ (rnewζ)2. To see this, observe that the lower bound for α has (rnewζ)2 in the

denominator, and everything else in the expression is greater than or equal to 1.

(Notice that γnew2

λ−
≥ 1)
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10. bα ≤ (rnewζ). This follows because b ≤ b0 = 0.1 and so − log(rnewζ)
− log b

≤ − log(rnewζ)
− log b0

=

log 1
rnewζ

2.3
≤ 1

2.3
1

rnewζ
≤ 1

(rnewζ)2 ≤ α.

Lemma 4.5.25 (Sparse Recovery Lemma (similar to [44, Lemma 6.4] and [85])). Assume

that all of the conditions of Theorem 4.2.8 hold. Recall that SEt = dif(P̂t,P t).

1. Conditioned on Γj−1,end, for t ∈ [tj, (ûj + 1)α]

(a) φt := ‖[(Φt)Tt
′(Φt)Tt ]

−1‖2 ≤ φ+ := 1.2.

(b) the support of xt is recovered exactly i.e. T̂t = Tt and et satisfies:

et := `t − ˆ̀
t = (x̂t − xt)−wt = ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′Φt(`t + wt)−wt

(4.11)

(c) Furthermore,

SEt ≤ 1 , and

‖et‖2 ≤
φ+

1− b(2ζ+
,∗
√
rγ +

√
rnewγnew + 2εw) ≤ 1.34

(
2
√
ζ +
√
rnewγnew + 2εw

)
2. For k = 2, 3, . . . , K and ûj = uj or ûj = uj + 1, conditioned on Γ

ûj
j,k−1, for t ∈

Jûj+k = [(ûj + k − 1)α + 1, (ûj + k)α], the first two conclusions above hold. That

is, φt ≤ φ+ and et satisfies (4.11). Furthermore,

SEt ≤ ζ+
j,∗ + ζ+

j,new,k−1 , and

‖et‖2 ≤
φ+

1− b(2ζ+
j,∗
√
rγ + ζ+

j,new,k−1

√
rnewγnew + 2εw)

≤ 1.34
(

2.15
√
ζ + 0.19 · (0.1)k−1√rnewγnew + 2εw

)
3. For ûj = uj or ûj = uj+1, conditioned on Γ

ûj
j,K, for t ∈

[
t̂j +Kα + 1, t̂j +Kα + (ϑ+ 1)α

]
,

the first two conclusions above hold (φt ≤ φ+ and et satisfies (4.11)). Furthermore,

SEt ≤ ζ+
j,add , and

‖et‖2 ≤
φ+

1− b(2ζ+
j,add

√
rγ + 2εw) ≤ 2.67(

√
ζ + εw)
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4. For ûj = uj or ûj = uj+1, conditioned on Γ̃
ûj
j,ϑ, for t ∈

[
t̂j +Kα + (ϑ+ 1)α + 1, tj+1 − 1

]
,

the first two conclusions above hold (φt ≤ φ+ and et satisfies (4.11)). Furthermore,

SEt ≤ ζ+
j+1,∗ , and

‖et‖2 ≤
φ+

1− b(2ζ+
j+1,∗
√
rγ + 2εw) ≤ 2.67(

√
ζ + εw)

Notice that cases 1) and 4) of the above lemma occur when the algorithm is in the

detection phase; during the intervals for case 2) the algorithm is performing projection-

PCA; during the interval for case 3), the algorithm is performing cluster-PCA. In case 1)

new directions have been added but not estimated, so the error, et, is the largest. In case

2), the error is decaying exponentially with each estimation step. Case 3) occurs after

the new directions have been successfully estimated but the old directions are not deleted

yet. Case 4) occurs after the latter has been done too (after cluster-PCA is done). Case

4) contains the smallest error bound, with case 3) bounds being only slightly larger. The

proof of this lemma is similar to the proof of Lemma 6.15 of [85]. It is given in Appendix

C.4. The main extra fact that we need to use now because the `t’s follow an AR model

is the following.

Fact 4.5.26. From Model 5, clearly ‖`t‖2 ≤
√
rγ

1−b . Moreover, `t can be expanded as

follows.

`t = `t,small +
t∑

τ=t−α+1

bt−τPτaτ where `t,small :=
t−α∑
τ=0

bt−τντ

Using the geometric series sum formula, bα ≤ rnewζ, and the bound on ζ from the theo-

rem,

‖`t,small‖2 ≤
bα
√
rγ

1− b ≤
rnewζ

√
rγ

1− b ≤
√
ζ

1− b
For t ∈ [tj, (ûj + 1)α), conditioned on Γj−1,end,

‖Φt`t‖2 = ‖Φ(j),0`t‖2 ≤
rnewζ

√
rγ

1− b +
1

1− b max
τ∈[t−α+1,t]

‖Φ0Pτaτ‖2 ≤
2rζ
√
rγ +

√
rnewγnew

1− b

≤ 2
√
ζ +
√
rnewγnew

1− b
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For a t ∈ Jûj+k for k = 2, 3, . . . K, conditioned on Γ
ûj
j,k−1, for ûj = uj or ûj = uj + 1,

‖Φt`t‖2 = ‖Φ(j),k−1`t‖2 ≤
rnewζ

√
rγ

1− b +
1

1− b max
τ∈[t−α+1,t]

‖Φk−1Pτaτ‖2

≤
2rζ
√
rγ + ζ+

new,k−1

√
rnewγnew

1− b

and the above can further be bounded by
2
√
ζ+ζ+

new,k−1

√
rnewγnew

1−b .

Using ζ+
new,K ≤ rnewζ (follows using Lemma 4.5.21 and expression for K) and the

bound on ζ, for t ∈ [t̂j +Kα + 1, t̂j +Kα + (ϑ+ 1)α], conditioned on Γ
ûj
j,K,

‖Φt`t‖2 = ‖Φ(j),K`t‖2 ≤
(2rζ + rnewζ)

√
rγ

1− b ≤ 2
√
ζ

1− b

Using Fact 4.5.24, item 3, for t ∈ [t̂j +Kα+ (ϑ+ 1)α+ 1, tj+1− 1], conditioned on Γ̃
ûj
j,ϑ,

ζj+1,∗ ≤ ζ+
j+1,∗ = rζ and so

‖Φt`t‖2 = ‖Φ(j+1),0`t‖2 ≤
2rζ
√
rγ

1− b ≤
2
√
ζ

1− b

Recall that bt := Φt(`t + wt). Thus, using the above, we get that ‖bt‖2 ≤ ‖Φt`t‖2 +

‖wt‖2 ≤ ξ (ξ is set in Theorem 4.2.8).

4.5.4 Main lemmas for proving Theorem 4.2.8 and proof of Theorem 4.2.8

The first three lemmas below deal with analyzing the addition step. They have

statements which are exactly the same as the corresponding lemmas in [85]. But the

proofs of the key lemmas needed for proving them are very different since the `t’s are

now correlated over time. We thus relegate the proofs of these lemmas to the appendix.

The proofs of the key lemmas needed for these are given in the main text though. The

fourth and the fifth lemma below deal with the deletion step (cluster-PCA) and these

are new. These are proved in this section itself.

Lemma 4.5.27 (No false detection of subspace changes). Pr
(

NODETSaj | Γ̃aj,ϑ

)
= 1

for a = uj or a = uj + 1.
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Lemma 4.5.28 (Subspace change detected within 2α frames). For j = 1, . . . , J ,

Pr
(

DET
uj+1
j | Γj−1,end,DETuj

)
≥ pdet,1 := 1− pA − pH.

The definitions of pA and pH can be found in the proofs of Lemmas 4.5.34 and 4.5.36

respectively.

Lemma 4.5.29 (k-th iteration of pPCA works well).

Pr
(
Γaj,k | Γaj,k−1

)
= Pr

(
PPCAa

j,k | Γaj,k−1

)
≥ pppca := 1− pA − pA,⊥ − pH

for a = uj or a = uj + 1. The definitions of pA, pA,⊥, and pH can be found in the proofs

of Lemmas 4.5.34, 4.5.35, and 4.5.36 respectively.

Lemma 4.5.30 (Clusters are correctly estimated).

Pr
(
CLUSTERa

j

∣∣ Γaj,K
)
≥ pcluster = 1− pcl − pl̃e − pẽe

for a = uj or a = uj + 1. The definition of pcl can be found in the proof of Lemma 4.5.38

and definition of pl̃e, pẽe can be found in the proof of Lemma 4.5.41.

Lemma 4.5.31 (Subspaces corresponding to each cluster are correctly estimated).

Pr
(

CPCAa
j,k | Γ̃aj,k−1

)
≥ pcpca := 1− pÃ − pÃ,⊥ − pH̃

for a = uj+1 or a = uj+1 + 1. The probabilities pÃ, pÃ,⊥, pH̃ are defined in the proofs of

Lemmas 4.5.39, 4.5.40, and 4.5.41 respectively.

Using Fact 4.5.24,
⋂ϑ
k=1 CPCAa

j,k implies that ζ(j+1),∗ ≤ ζ+
(j+1),∗ = rζ. Thus, Γaj,end

also implies this.
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Corollary 4.5.32. Let pdet,0 := Pr
(
DET

uj
j | Γj−1,end

)
. Combining Lemmas 4.5.27, 4.5.28,

4.5.29, 4.5.30, and 4.5.31 gives

Pr (Γj,end | Γj−1,end)

= Pr

((
DET

uj
j

K⋂
k=1

PPCA
uj
j,k

⋂
CLUSTER

uj
j

ϑ⋂
k=1

CPCA
uj
j,k

)⋃
(

DET
uj
j ∩DET

uj+1
j

K⋂
k=1

PPCA
uj+1
j,k

⋂
CLUSTER

uj+1
j

ϑ⋂
k=1

CPCA
uj+1
j,k

) ∣∣ Γj−1,end

)
≥ pdet,0 · (pppca)K · (pcluster) · (pcpca)ϑ + (1− pdet,0) · pdet,1 · (pppca)K · (pcluster) · (pcpca)ϑ

≥ pdet,1(pppca)K · pcluster(pcpca)ϑ

Proof of Theorem 4.2.8 and Corollary 4.2.11. Using the fact that Γj−1,end ⊆ Γj−2,end ⊆

· · · ⊆ Γ1,end ⊆ Γ0,end, Pr(ΓJ,end) = Pr(Γ0,end)
∏J

j=1 Pr(Γj,end | Γj−1,end).

By Lemma 4.5.20 and the argument used to prove Lemmas 4.5.25 and 4.5.27, we get

that Pr(Γ0,end) ≥ 1− n−10. Thus, using Corollary 4.5.32, and the lower bound on α,

Pr(ΓJ,end) ≥ (1− n−10)
(
pdet,1(pppca)K · pcluster(pcpca)ϑ

)J
≥ (1− n−10)(pppca)(K+1)J(pcluster(pcpca)ϑ)J ≥ (1− n−10)3 ≥ 1− 3n−10.

By Fact 4.5.24, Lemma 4.5.25, and Lemma 4.5.21, ΓJ,end implies that T̂t = Tt for all

times t; and that all the bounds on the subspace error SEt and on et hold.

4.5.5 Key lemmas needed for proving the main lemmas

The following lemma follows from the sin θ theorem [95] (Theorem C.1.3 in Appendix

C.1) and Weyl’s inequality. It is taken from [44].

Lemma 4.5.33 ([44], Lemma 6.9). At u = ûj + k, if rank(P̂(j),new,k) = rj,new, and if

λmin(Au)− ‖Au,⊥‖2 − ‖Hu‖2 > 0, then

ζj,new,k ≤
‖Hu‖2

λmin(Au)− ‖Au,⊥‖2 − ‖Hu‖2

. (4.12)
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Similarly, if Ĝj,k = Gj,k and λmin(Ãj,k)− ‖Ãj,k,⊥‖2 − ‖H̃j,k‖2 > 0, then

ζ̃j,k ≤
‖H̃j,k‖2

λmin(Ãj,k)− ‖Ãj,k,⊥‖2 − ‖H̃j,k‖2

(4.13)

The next three lemmas (4.5.34, 4.5.35, and 4.5.36) each assert a high probability

bound for one of the terms in (4.12). These, along with Lemma 4.5.33, are used to

prove Lemmas 4.5.28 and 4.5.29. The proofs of these lemmas use the matrix Azuma

inequalities (Lemmas C.1.12, C.1.13 or C.1.14 in the Appendix) and hence we refer to

them as the “addition Azuma” lemmas. Let

ε =
1

1− b2
0.001rnewζλ

− (4.14)

Lemma 4.5.34. Define

bA :=
1

1− b2

(
(1− (ζ+

∗ )2)λ−new − (rnewζ)2 b2

1− b2
(1− ζ+

∗ )2λ−new

)
− 4ε

For k = 1, . . . , K, for all Xûj+k−1 ∈ Γ
ûj
j,k−1 with ûj = uj or ûj = uj + 1,

Pr
(
λmin

(
Aûj+k

)
≥ bA

∣∣ Xûj+k−1

)
≥ 1− pA

where pA is defined in the proof.

Lemma 4.5.35. Define

bA,⊥ :=
1

1− b2
(ζ+
∗ )2λ+ +

0.05(rnewζ)2b2λ−

(1− b2)(1− b)2
+ 4ε

For k = 1, . . . , K, for all Xûj+k−1 ∈ Γ
ûj
j,k−1 with ûj = uj or ûj = uj + 1,

Pr
(
λmax

(
Aûj+k,⊥

)
≤ bA,⊥

∣∣ Xûj+k−1

)
≥ 1− pA,⊥

where pA,⊥ is defined in the proof.

Lemma 4.5.36. Define

bH,k := 2b`e,k + bee,k + 2bFk
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where for k ≥ 2,

b`e,k :=
1

1− b2
(
√
ρ2h+φ+(ζ+

∗ )2λ+ +
√
ρ2h+φ+ζ+

new,k−1λ
+
new) +

0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+ 6ε

bee,k :=
1

1− b2
(ρ2h+ (φ+)2(ζ+

∗ )2λ+ + ρ2h+ (φ+)2(ζ+
new,k−1)2λ+

new) +
0.05(rnewζ)b2λ−

(1− b2)(1− b)2

+ (φ+)2(0.06rnewζλ
−) + 8ε

bF ,k :=
1

1− b2
(ζ+
∗ )2λ+ +

0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+ 4ε

and for k = 1,

b`e,1 :=
1

1− b2
(
√
ρ2h+φ+(ζ+

∗ )2λ+ + φ+κ+
s,newλ

+
new) +

0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+ 6ε

bee,1 :=
1

1− b2
(ρ2h+ (φ+)2(ζ+

∗ )2λ+ + ρ2h+ (φ+)2(κ+
s,new)2λ+

new) +
0.05(rnewζ)b2λ−

(1− b2)(1− b)2
ρ2h+

+ (φ+)2(0.06rnewζλ
−) + 8ε

bF ,1 :=
1

1− b2
(ζ+
∗ )2λ+ +

0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+ 4ε

For k = 1, . . . , K, for all Xûj+k−1 ∈ Γ
ûj
j,k−1 with ûj = uj or ûj = uj + 1,

Pr
(
‖Hûj+k‖2 ≤ bH,k

∣∣ Xûj+k−1

)
≥ 1− pH (4.15)

where pH := p`e + pee + pF and p`e, pee and pF are defined in the proof.

Fact 4.5.37. Using ρ2h+ ≤ 10−4, λ+
new

λ−
≤ 3, λ−new ≥ λ−, φ+ = 1.2, κ+

s,new = 0.0215,

b ≤ 0.1, ζ ≤ min{ 10−4

(r+rnew)2 ,
0.003λ−

(r+rnew)2λ+}, ζ+
∗ = rζ, ε = 1

1−b2 0.001rnewζ,

bA≥
λ−

1− b2
(0.9999− 0.005rnewζ)

bA,⊥≤
0.008rnewζλ

−

1− b2

bH,1≤
λ−

1− b2
(0.156 + 0.1rnewζ)

bH,k≤
λ−

1− b2
(0.073ζ+

new,k−1 + 0.1rnewζ)

The following lemma is needed for the proof of Lemma 4.5.30.
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Lemma 4.5.38. Let t̂cl := t̂j +Kα + 1. Let q2 := 0.05λ−.

Pr

‖ 1

α

t̂cl+α−1∑
t=t̂cl

`t`t
′ − 1

1− b2
Σ(j)‖ ≤ q2

∣∣ Xûj+K

 ≥ 1− pcl.

for all Xûj+K ∈ Γ
ûj
j,K for ûj = uj or uj + 1 In the above, pcl is defined in the proof.

The next three lemmas are needed for the proof of Lemma 4.5.31. The third one

below is also used in the proof of Lemma 4.5.30.

Lemma 4.5.39. Define

bÃ,k := (1− r2ζ2)(1− (rnewζ)2b2

1− b2
)

1

1− b2
λ−j,k − 4ε

For j = 1, . . . , J and k = 1, . . . , ϑ, for a = uj or a = uj + 1, for all X(ûj+K+1)+k−1 ∈

Γ̃aj,k−1,

P
(
λmin(Ãj,k) ≥ bÃ,k

∣∣ X(ûj+K+1)+k−1

)
> 1− pÃ

where pÃ is defined in the proof.

Lemma 4.5.40. Define

bÃ,⊥,k :=
1

1− b2
(2(rζ)2λ+ + λ+

k+1) +
0.05(rnewζ)b2

(1− b2)(1− b)2
+ 4ε

For j = 1, . . . , J and k = 1, . . . , ϑ, for a = uj or a = uj + 1, for all X(ûj+K+1)+k−1 ∈

Γ̃aj,k−1,

Pr
(
λmax(Ãj,k,⊥) ≤ bÃ,⊥,k

∣∣ X(ûj+K+1)+k−1

)
> 1− pÃ,⊥,k

where pÃ,⊥,k is defined in the proof.

Lemma 4.5.41. Define

bH̃,k := 2b ˜̀e,k + bẽe,k + 2bF̃ ,k

where b ˜̀e,k :=
√
ρ2h+(φ+)2( 1

1−b2 (r + rnew)ζ((rζ)λ+ + λ+
k )) + 0.05(rnewζ)b2λ−

(1−b2)(1−b)2 + 6ε

bẽe,k := ρ2h+ (φ+)2 1
1−b2 (rζ)(r + rnew)ζλ+ + 0.05(rnewζ)b2λ−

(1−b2)(1−b)2 + (φ+)22(0.03ζλ−) + 8ε

bF̃ ,k := 1
1−b2

(
(rζ)2λ+ + (rζ)2√

1−(rζ)2
λ+
k+1

)
+ 0.05(rnewζ)b2λ−

(1−b2)(1−b)2 + 4ε
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For k = 1, . . . , k, for a = uj or a = uj + 1, for all X(ûj+K+1)+k−1 ∈ Γ̃aj,k−1,

Pr
(
‖H̃k‖2 ≤ bH̃,k

∣∣ X(ûj+K+1)+k−1

)
≥ 1− pH̃

where pH̃ := p ˜̀e + pẽe + pF̃ and p ˜̀e, pẽe, pF̃ are defined in the proof.

Also, for a = uj or a = uj + 1, for all Xûj+K ∈ Γaj,K,

Pr

2‖ 1

α

t̂j+(K+1)α+1∑
t=t̂j+Kα+1

`te
′
t‖2 + ‖ 1

α

∑
t

ete
′
t‖2 ≤ bH̃,1

∣∣ Xûj+K

 ≥ 1− p ˜̀e − pẽe

(This is used in the proof of Lemma 4.5.38. It follows using the exact same approach as

that used to bound ‖H̃1‖2.)

Fact 4.5.42. Using ρ2h+ ≤ 10−4,
λ+
k

λ−k
≤ g+ = 3, φ+ = 1.2, κ+

s,new = 0.0215, b ≤ 0.1,

λ+
k+1

λ−k
≤ χ+ = 0.2, ζ ≤ min{ 10−4

(r+rnew)2 ,
0.003λ−

(r+rnew)2λ+}, ζ+
∗ = rζ, ε = 1

1−b2 0.001rnewζ, we have

bÃ,k≥
λ−k

1− b2
(0.9999− 0.005rnewζ) (4.16)

bÃ,⊥,k≤
λ−k

1− b2
(0.2 + 0.07rnewζ) (4.17)

bH̃,k≤
λ−k

1− b2
(0.072(r + rnew)ζ + 0.095rnewζ) (4.18)

4.5.6 Proofs of the main lemmas

Lemmas 4.5.27, 4.5.28, and 4.5.29 are proved in Appendix C.5. These use the first

three lemmas from the above subsection.

Proof of Lemma 4.5.30. In this proof, all of the probabilistic statements are conditioned

on Xûj+K ∈ Γ
ûj
j,K for ûj = uj or uj + 1.

Let t̂cl := t̂j +Kα+ 1. Recall from Algorithm 4 that Σ̂sample :=
1

α

t̂cl+α−1∑
t=t̂cl

ˆ̀
t
ˆ̀
t
′. Define

Σsample :=
1

α

t̂cl+α−1∑
t=t̂cl

`t`t
′.
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By Lemma 4.5.38 and Lemma C.1.11, under the given conditioning, with probability

(w.p.) at least 1− pcl,

λmax(Σsample −
1

1− b2
Σ(j)) ≤ q2 := 0.05λ− (4.19)

Let k0 = 0. Let ki denote the last index of cluster i. Thus true cluster 1, Gj,1 =

{1, 2, . . . k1}, true cluster 2, Gj,2 = {k1 + 1, k1 + 2, . . . k2} and so on for all i = 1, 2, . . . ϑj.

Recall that Σ(j) has rank rj and so kϑj = rj.

Consider “true cluster” 1. We need to show that “estimated cluster” 1, Ĝj,1 =

{1, 2, . . . k1}. Let λ̂i := λi

(
Σ̂sample

)
. We will be done if we can show that

1.
λ̂1

λ̂k1

≤ ĝ+ and

2.
λ̂1

λ̂k1+1

> ĝ+

Define

q :=
∥∥∥Σsample − Σ̂sample

∥∥∥
2

Using the fact that ˆ̀
t = `t − et we get that

q ≤ 2

∥∥∥∥ 1

α

∑
t

`tet
′
∥∥∥∥+

∥∥∥∥ 1

α

∑
t

etet
′
∥∥∥∥

Using Lemma 4.5.41, Fact 4.5.42 and (r + rnew)ζλ−k ≤ (r + rnew)ζλ+ ≤ 0.0003λ− (from

the bound on ζ), under the given conditioning,

q≤ λ−k
1−b2 (0.072(r + rnew)ζ + 0.095rnewζ)

< 0.01λ−

with probability at least 1− pl̃e − pẽe where pl̃e, pẽe are defined in Lemma 4.5.41.

Using Weyl’s inequality and (4.19), for i = 1, . . . , n

λ̂i := λi(Σ̂sample) ≤ λi(Σsample) + λmax(Σ̂sample −Σsample)

≤ λi(
1

1− b2
Σ(j)) + λmax(Σsample −

1

1− b2
Σ(j)) + q

≤ λi(
1

1− b2
Σ(j)) + q2 + q
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and

λ̂i := λi(Σ̂sample) ≥ λi(Σsample)− λmax(Σ̂sample −Σsample)

≥ λi(
1

1− b2
Σ(j))− λmax(Σsample −

1

1− b2
Σ(j))− q

≥ λi(
1

1− b2
Σ(j))− q2 − q

The above strategy to bound λi(Σ̂sample) was suggested in [98].

Thus, using the the fact that
λ1(Λ(j))

λk1
(Λ(j))

≤ g+ = 3 and λk1(Λ(j)) ≥ λ−, we have that

λ̂1

λ̂k1

≤
1

1−b2λ1(Λ(j)) + q2 + q
1

1−b2λk1(Λ(j))− q2 − q
≤
g+ + (q2+q)(1−b2)

λk1
(Λ(j))

1− (q2+q)(1−b2)
λk1

(Λ(j))

≤ g+ + (q2+q)
λ−

1− (q2+q)
λ−

≤ 3 + 0.06

1− 0.06
= ĝ+.

Similarly, using the lower bound
λ1(Λ(j))

λk1+1(Λ(j))
≥ 1

χ+ = 5 from Model 8,

λ̂1

λ̂k1+1

≥
1

1−b2λ1(Λ(j))− q2 − q
1

1−b2λk1+1(Λ(j)) + q2 + q
≥

λ1(Λ(j))

λk1+1(Λ(j))
− (q2+q)(1−b2)

λk1+1(Λ(j))

1 + (q2+q)(1−b2)
λk1+1(Λ(j))

≥
λk1

(Λ(j))

λk1+1(Λ(j))
− (q2+q)

λ−

1 + (q2+q)
λ−

≥
1
χ+ − (q2+q)

λ−

1 + (q2+q)
λ−

≥ 5− 0.06

1 + 0.06
= 4.67 > ĝ+

This shows that the first cluster is correctly recovered. Proceeding in the same manner,

λ̂ki−1+1

λ̂ki
≤ g+ + (q2+q)

λ−

1− (q2+q)
λ−

≤ 3 + 0.06

1− 0.06
= ĝ+.

and

λ̂ki−1+1

λ̂ki+1

≥
1
χ+ − (q2+q)

λ−

1 + (q2+q)
λ−

=
5− 0.06

1 + 0.06
= 4.67 > ĝ+.

Recall that the clustering algorithm excludes all eigenvalues below 0.25λ̂−train. Recall also

that Σ(j) has rank rank rj = kϑj . Thus from the upper and lower bounds on λ̂i given

above and using Lemma 4.5.20, we can also conclude that,

λ̂kϑj ≥ λkϑj − q2 − q ≥ λ− − 0.06λ− > 0.75λ− > 0.25λ̂−train

and

λ̂kϑj+1 ≤ λkϑj+1 + q2 + q ≤ 0 + 0.06λ− < 0.25λ̂−train
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Thus, the algorithm also stops at the correct place. We have shown that all of the

clusters will be recovered exactly and no extra clusters will be formed (algorithm stops

at the correct place). Thus,

Pr
(
CLUSTERa

j

∣∣ Γaj,K
)
≥ pcluster := 1− pcl − pl̃e − pẽe

for a = uj or a = uj + 1. This proves the lemma.

Proof of Lemma 4.5.31. Since we condition on the event Γ
ûj
j,k−1 and Γ

ûj
j,k−1 ⊆ CLUSTER

ûj
j ,

the clusters are correctly recovered, i.e. Ĝj,k = Gj,k. This lemma then follows by combin-

ing Lemma 4.5.33 with the bounds from Lemmas 4.5.39, 4.5.39, 4.5.41 and finally using

Lemma C.1.11.

4.6 Proof Of The Addition Azuma Lemmas

4.6.1 A general decomposition used in all the proofs

A general decomposition will be developed here. We will use this in all the proofs that

follow. Consider an interval Ju and let t0 denote the first time instant of this interval.

Let X ≡ X(t0−1)/α = {ν0,ν1, . . .νt0−1, {Tt}t=1,2,...tmax}. Let M t and N t be matrices that

are deterministic given X. Consider bounding

1

α

t0+α−1∑
t=t0

N t`t`t
′M t

conditioned on X for X ∈ Γ.

From our model, notice that

`t = bt−t0+1`t0−1 +
t∑

τ=t0

bt−τντ
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Thus,

1

α

t0+α−1∑
t=t0

N t`t`t
′M t

=
1

α

t0+α−1∑
t=t0

N t

(
bt−t0+1`t0−1 +

t∑
τ=t0

bt−τντ

)(
bt−t0+1`t0−1 +

t∑
τ̃=t0

bt−τ̃ν τ̃

)′
M t

:=term1 + term2 + term3

where

term1 =
1

α

t0+α−1∑
t=t0

b2(t−t0)+2N t(`t0−1`t0−1
′)M t

term3 =
1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−t0−τ+1N t(ντ`t0−1
′ + `t0−1ν

′
τ )M t

term2 =
1

α

t0+α−1∑
t=t0

N t

(
t∑

τ=t0

bt−τντ

)(
t∑

τ̃=t0

bt−τ̃ν τ̃

)′
M t

:= term21 + term22 + term23 where

term21 =
1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τN t(ντν
′
τ )M t

term22 =
1

α

t0+α−1∑
t=t0

t∑
τ=t0

τ−1∑
τ̃=t0

b2t−τ−τ̃N t(ντν
′
τ̃ )M t

term23 =
1

α

t0+α−1∑
t=t0

t∑
τ=t0

t∑
τ̃=τ+1

b2t−τ−τ̃N t(ντν
′
τ̃ )M t

We will show that term22, term23, term3 are close to zero whp, and that term1 can

be bounded by a very small value (proportional to 1/α). The only non-trivial term is

term21 and we will show how to (i) bound its spectral norm whp and, (ii) whenN t = M ′
t

(so that this term is symmetric), how to also bound its minimum eigenvalue whp. For

all terms, except term1 (which is a constant when conditioning on X), we will use the

matrix Azuma inequalities (given in Appendix C.1). We first show how to bound the
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near-zero terms. Consider term22. By Lemma C.1.8 (exchange order of double sum),

term22 =
1

α

t0+α−1∑
τ=t0

t0+α−1∑
t=τ

τ−1∑
τ̃=t0

b2t−τ−τ̃N t(ντν
′
τ̃ )M t

:=
1

α

t0+α−1∑
τ=t0

Zτ

To apply matrix Azuma (Lemma C.1.14), we need to bound ‖ 1
α

∑t0+α−1
τ=t0

E[Zτ |Zt0 ,Zt0+1,

. . . ,Zτ−1, X]‖2 and ‖Zτ‖ conditioned on X. Now,

E[Zτ |Zt0 ,Zt0+1, . . . ,Zτ−1, X] =

t0+α−1∑
t=τ

τ−1∑
τ̃=t0

b2t−τ−τ̃N tE[ντν
′
τ̃ |Zt0 ,Zt0+1, . . . ,Zτ−1, X]M t

Consider E[ντν
′
τ̃ |Zt0 ,Zt0+1, . . . ,Zτ−1, X]. Notice that here τ̃ ≤ τ − 1. Thus, this

is a case a of E[WY |Z] where W is independent of {Y, Z} with W ≡ ντ , Y ≡ ν τ̃ and

Z ≡ {Zt0 ,Zt0+1, . . . ,Zτ−1, X}. This is true because Zτ is a function of νt0 ,νt0+1, . . . ,ντ

and thus {Zt0 ,Zt0+1, . . . ,Zτ−1, X} = f(ν0,ν1, . . .ντ−1, {Tt̃}t̃=1,2,...,tmax
). So {Y, Z} =

g(ν0,ν1, . . .ντ−1, {Tt̃}t̃=1,2,...,tmax
) and this is independent of ντ (by the independence

assumption from the theorem). Thus, by Lemma C.1.10, since ντ is zero mean,

E[ντν
′
τ̃ |Zt0 ,Zt0+1, . . . ,Zτ−1, X] = E[ντ ]E[ν ′τ̃ |Zt0 ,Zt0+1, . . . ,Zτ−1, X] = 0

Also,

‖Zτ‖2 ≤ (max
τ

t0+α−1∑
t=τ

τ−1∑
τ̃=t0

b2t−τ−τ̃ ) max
t,τ,τ̃
‖N tντν

′
τ̃M t‖2

≤ bprob,term22 :=
b

(1− b2)(1− b) max
t,τ,τ̃
‖N tντν

′
τ̃M t‖2

Thus by Azuma, conditioned onX, ‖term22‖2 ≤ ε w.p. at least 1−(2n) exp
(

−αε2
32(bprob,term22)2

)
.

Consider term23. By Lemma C.1.8 (exchange order of double sum),

term23 =
1

α

t0+α−1∑
τ=t0

t0+α−1∑
t=τ

t∑
τ̃=τ+1

b2t−τ−τ̃N t(ντν
′
τ̃ )M t

This term is not in a form where we can apply the matrix Azuma inequalities to get a

useful bound. But we can get it into a nicer form by a simple change of variables. Let
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p = (t0 + α− 1)− τ and use this to replace τ . Then,

term23 =
1

α

α−1∑
p=0

t0+α−1∑
t=t0+α−1−p

t∑
τ̃=t0+α−p

b2t−t0−α+p−τ̃+1N t(νt0+α−1−pν
′
τ̃ )M t

:=
1

α

α−1∑
p=0

Zp

To apply Azuma (Lemma C.1.14), we need to bound ‖ 1
α

∑α−1
p=0 E[Zp|Z0,Z1, . . . ,Zp−1, X]‖2

and ‖Zp‖ conditioned on X. Now,

E[Zp|Z0,Z1, . . . ,Zp−1, X]

=

t0+α−1∑
t=t0+α−1−p

t∑
τ̃=t0+α−p

b2t−t0−α+1−τ̃N tE[νt0+α−1−pν
′
τ̃ |Z0,Z1, . . . ,Zp−1, X]M t

Notice that Zp is a function of νt0+α−p−1,νt0+α−p, . . . ,νt0+α−1. Also recall that X =

{ν0,ν1, . . .νt0−1}. Thus, {Z0,Z1, . . . ,Zp−1, X} = f(ν0,ν1, . . .νt0−1, νt0+α−p,νt0+α−p+1,

. . .νt0+α−1). Notice also that τ̃ ≥ t0 + α − p. Thus, the expectation above is again a

case of E[WY |Z] where W is independent of {Y, Z} with W = νt0+α−p−1, Y = ν τ̃ (for a

τ̃ ≥ t0 +α−p) and Z = {Z0,Z1, . . . ,Zp−1, X} = f(ν0,ν1, . . .νt0−1, νt0+α−p,νt0+α−p+1,

. . . ,νt0+α−1). Using, this, by Lemma C.1.10, E[νt0+α−1−pν ′τ̃ |Z0,Z1, . . . ,Zp−1, X] = 0.

Also,

‖Zp‖ ≤ (max
p

t0+α−1∑
t=t0+α−1−p

t∑
τ̃=t0+α−p

b2t−t0−α+1−τ̃ ) max
t,p,τ̃
‖N tνt0+α−1−pν

′
τ̃M t‖2

≤ bprob,term23 :=
1

(1− b)2
max
t,τ,τ̃
‖N tντν

′
τ̃M t‖2

Thus by Azuma, conditioned onX, ‖term23‖2 ≤ ε w.p. at least 1−(2n) exp
(

−αε2
32(bprob,term23)2

)
.

Consider term3. By Lemma C.1.8 (exchange order of double sum),

term3 =
1

α

t0+α−1∑
τ=t0

t0+α−1∑
t=τ

b2t−t0−τ+1N t(ντ`t0−1
′ + `t0−1ν

′
τ )M t

:=
1

α

t0+α−1∑
τ=t0

Zτ
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To apply Azuma (Lemma C.1.14), we need to bound ‖ 1
α

∑t0+α−1
τ=t0

E[Zτ |Zt0 ,Zt0+1, . . . ,

Zτ−1, X]‖2 and ‖Zτ‖2 conditioned on X. We can show that

E[Zτ |Zt0 ,Zt0+1, . . . ,Zτ−1, X]

=

t0+α−1∑
t=τ

b2t−t0−τ+1N tE[(ντ`t0−1
′ + `t0−1ν

′
τ )|Zt0 ,Zt0+1, . . . ,Zτ−1, X]M t = 0.

This follows because Zτ = f(ντ , X) and thus, {Zt0 ,Zt0+1, . . . ,Zτ−1, X} = f̃(ν0,ν1, . . . ,

ντ−1). Also, `t0−1 = g(X) = g̃(ν0,ν1, . . . ,νt0−1). Thus, this is again a case of E[WY |Z]

with W = ντ , Y = `t0−1 = g̃(ν0,ν1, . . . ,νt0−1) and Z = {Zt0 ,Zt0+1, . . . ,Zτ−1, X} =

f̃(ν0,ν1, . . . ,ντ−1).

Also,

‖Zτ‖ ≤ bprob,term3 :=
1

(1− b2)
max
t,τ

(‖N tντ`t0−1
′M t‖2 + ‖N t`t0−1ν

′
τM t‖2)

Thus by Azuma, conditioned onX, ‖term3‖2 ≤ ε w.p. at least 1−(2n) exp
(

−αε2
32(bprob,term3)2

)
.

Consider term1. Since `t0−1 = f(X) and everything else in this term is also a function

of X, this term is a constant given X. Thus we can bound it directly. We have

‖term1‖2 ≤
1

α

t0+α−1∑
t=t0

b2(t−t0)+2 max
t∈[t0,t0+α−1]

‖N t(`t0−1`t0−1
′)M t‖2

≤ b2

α(1− b2)
max

t∈[t0,t0+α−1]
‖N t(`t0−1`t0−1

′)M t‖2

≤ (rnewζ)2b2

(1− b2)
max

t∈[t0,t0+α−1]
‖N t(`t0−1`t0−1

′)M t‖2 := bterm1 (4.20)

Consider term21. By Lemma C.1.8 (exchange summation order),

term21 =
1

α

t0+α−1∑
τ=t0

t0+α−1∑
t=τ

b2t−2τN t(ντν
′
τ )M t

:=
1

α

t0+α−1∑
τ=t0

Zτ

To obtain an upper bound on its spectral norm using Azuma, we need to upper bound

‖ 1
α

∑t0+α−1
τ=t0

E[Zτ |Zt0 ,Zt0+1, . . . ,Zτ−1, X]‖2 and ‖Zτ‖2. To get a lower bound on its
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minimum eigenvalue we need to lower bound λmin( 1
α

∑t0+α−1
τ=t0

E[Zτ |Zt0 ,Zt0+1, . . . ,Zτ−1, X])

as well. We have

E[Zτ |Zt0 ,Zt0+1, . . . ,Zτ−1, X] =

t0+α−1∑
t=τ

b2t−2τN tE[ντν
′
τ |Zt0 ,Zt0+1, . . . ,Zτ−1, X]M t

=

t0+α−1∑
t=τ

b2t−2τN tΣτM t

The last row follows because we condition on a function of {ν0,ν1, . . . ,ντ−1}, ντ is

independent of all these and E[ντν
′
τ ] = Στ . Then by applying Lemma C.1.8 in reverse

order, we get

1

α

t0+α−1∑
τ=t0

E[Zτ |Zt0 ,Zt0+1, . . . ,Zτ−1, X] :=
1

α

t0+α−1∑
τ=t0

t0+α−1∑
t=τ

b2t−2τN tΣτM t

=
1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τN tΣτM t

Also,

‖Zτ‖2 ≤ (max
τ

t0+α−1∑
t=τ

b2t−2τ ) max
t,τ
‖N tντν

′
τM t‖2 ≤ bprob,term21 :=

1

(1− b2)
max
t,τ
‖N tντν

′
τM t‖2

Thus by Azuma (Lemma C.1.14), conditioned on X,

‖term21‖2 ≤ ‖
1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τN tΣτM t‖2 + ε (4.21)

w.p. at least 1− (2n) exp
(

−αε2
32(bprob,term21)2

)
.

Let bterm21 denote the upper bound on the first term in the RHS of (4.21). Then,

conditioned on X,

‖ 1

α

t0+α−1∑
t=t0

N t`t`t
′M t‖2 ≤ bterm1 + bterm21 + 4ε (4.22)

with probability obtained from a union bound.

Consider the special case when N ′t = M t. In this case, 1
α

∑t0+α−1
t=t0

N t`t`t
′M t is a

symmetric matrix and so is term21. We can lower bound its minimum eigenvalue using
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Azuma Lemma C.1.13 to get that, conditioned on X,

λmin(term21) ≥ λmin(
1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τN tΣτN
′
t)− ε (4.23)

w.p. at least 1 − (2n) exp
(

−αε2
32(bprob,term21)2

)
. Let blower,term21 denote the lower bound on

the first term in the RHS of (4.23). Then, conditioned on X, we can conclude that

λmin(
1

α

t0+α−1∑
t=t0

N t`t`t
′M t) ≥ blower,term21 − 4ε (4.24)

with probability obtained from a union bound. We get the above because of the following

reason. Since term1 is symmetric positive semi-definite, λmin(term1) ≥ 0. Since term3

is symmetric, λmin(term3) ≥ −‖term3‖ ≥ −ε. Since term2 is also a symmetric matrix

in this case, it follows that term22 + term23 = term2 − term21 is a symmetric matrix.

Thus λmin(term22 + term23) ≥ −‖term22 + term23‖ ≥ −‖term22‖ − ‖term23‖ ≥ −2ε.

In the special case when N ′t = M t = M 0, using Lemma C.1.9, the RHS in (4.23)

can be lower bounded by 1
1−b2 (1− b2

α(1−b2)
) minτ∈[t0,t0+α−1] λmin(M ′

0ΣτM 0)− ε.

In the special case when N t = N 0 and M t = M 0, the RHS in (4.21) can be upper

bounded by 1
1−b2 maxτ∈[t0,t0+α−1] ‖N 0ΣτM 0‖2 + ε.

In the special case when N t = Φ0 and M t = Φk−1ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′, we can

apply Cauchy-Schwartz for matrices followed by Lemma 4.5.22 (support change lemma)

to the RHS of (4.21) to get the final upper bound.

In the special case when N ′t = M t = Φk−1ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′, we can directly

apply Lemma 4.5.22 (support change lemma) to the RHS of (4.21) to get the upper

bound.

4.6.2 A general decomposition for terms containing wt

Consider bounding 1
α

∑t0+α−1
t=t0

N t`twt
′M t conditioned on X. Here X contains νt’s

for all t ≤ t0 − 1 and contains all the Tt’s. Using the independence assumption from the
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theorem,

E[Zt|Zt−1,Zt−2, . . . ,Zt0 , X] = E[`t|Zt−1,Zt−2, . . . ,Zt0 , X]E[w′t] = 0

This follows by Lemma C.1.10 with W ≡ wt, Y ≡ `t = g(ν0,ν1, . . . ,νt) and Z ≡

{Zt−1,Zt−2, . . . ,Zt0 , X} = f(wt0 ,wt0+1, . . . ,wt−1,ν0,ν1, . . . ,νt−1, Tτ̃ , τ̃ = 1, 2, . . . , tmax}

and using the fact that wt is zero mean. Also,

‖N t`twt
′M t‖2 ≤ bprob,`twt := max

t
‖N t`twt

′M t‖2

Thus we can conclude by Azuma Lemma C.1.14 that

‖ 1

α

t0+α−1∑
t=t0

N t`twt
′M t‖2 ≤ ε

w.p. at least 1− (2n) exp
(

−αε2
32(bprob,`twt )

2

)
.

Fact 4.6.1. In situations where it is not practical to assume that wt is independent of

Tt, the assumption of Remark 4.2.4 can be used. With this, we can proceed as in Sec.

4.6.1 above. There will be only two terms, term1 = 1
α

∑t0+α−1
t=t0

N tb
t−t0+1`t0−1wt

′M t and

term2 = 1
α

∑t0+α−1
t=t0

∑t
τ=t0

N tb
t−τντw′t. We can bound term1 as before by (rnewζ)2b

1−b
√
rγεw

‖N t‖2‖M t‖2. Everywhere where we use this, ‖N t‖2‖M t‖2 ≤ 1.22 = 1.44. With

this and with using the bounds on εw and ζ, this is smaller than 0.001rnewζλ
− = ε.

By Lemma C.1.8, term2 = 1
α

∑t0+α−1
τ=t0

∑t0+α−1
t=τ N tb

t−τντw′t := 1
α

∑t0+α−1
τ=t0

Zτ . No-

tice that {Zt0 ,Zt0+1, . . . ,Zτ−1, X} = f(ν0,ν1, . . . ,ντ−1,wt0 ,wt0+1, . . . ,wt0+α−1, Tτ̃ , τ̃ =

1, 2, . . . , tmax) and so E[Zτ |Zt0 ,Zt0+1, . . . ,Zτ−1, X] is an example of of E[WY |Z] with

W independent of {Y, Z} if we let W = ντ , Y = wt and Z = {Zt0 ,Zt0+1, . . . ,Zτ−1, X}.

Hence it is equal to zero. Thus, using Azuma Lemma C.1.14 we can bound term2 by ε

whp. With this, whenever ‖N t‖2‖M t‖2 ≤ 1.22 = 1.44, ‖ 1
α

∑t0+α−1
t=t0

N t`twt
′M t‖2 < 2ε

(instead of ε).
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4.6.3 Proofs of the addition Azuma bounds: Lemmas 4.5.34, 4.5.35, and

4.5.36

We remove the subscript j at various places in this and later sections. Thus, for

example, Φ(j),k−1 is replaced by Φk−1 for k = 1, 2, . . . K.

Definition 4.6.2. Let X ≡ Xk−1 ≡ Xûj+k−1.

Fact 4.6.3. Let Dnew,k−1 := Φk−1Pnew and D∗,k−1 := Φk−1P∗. Recall that Dnew =

Dnew,0 = Φ0Pnew. When Xûj+k−1 ∈ Γaj,k−1 for a = uj or a = uj + 1,

1. ‖D∗,k−1‖2 ≤ ζ+
j,∗ for k = 1, . . . , K (this follows using Fact 4.5.24).

2. ‖Dnew,k−1‖2 ≤ ζ+
new,k−1 for k = 1, . . . , K + 1 (by definition of Γ

ûj
j,k−1).

3. Recall that ζ+
new,0 = 1.

4. λmin(RnewRnew
′) ≥ 1−(ζ+

∗ )2 (this follows because ‖P̂∗′Pnew‖2 = ‖P̂∗′(I−P∗P∗
′)Pnew‖2

≤ ζ∗)

5. Enew
′Dnew = Enew

′EnewRnew = Rnew and Enew,⊥′Dnew = 0.

6. ‖[(Φt)Tt
′(Φt)Tt ]

−1‖2 ≤ φ+ (using Lemma 4.5.25)

7. et satisfies (4.11) with probability one (using Lemma 4.5.25).

Proof of Lemma 4.5.34. In this proof all probabilistic statements are conditioned on

Xûj+k−1 for Xûj+k−1 ∈ Γ
ûj
j,k−1 for ûj = uj or uj + 1. We need a lower bound on the

minimum eigenvalue of Au for u = ûj + k for k = 1, 2, . . . , K and ûj = uj or uj + 1. For

u = ûj + k, recall that

Au :=
1

α

∑
t∈Ju

Enew
′Φ0`t`t

′Φ0Enew
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Let t0 be the first time instant of Jûj+k. We proceed as in Section 4.6.1 with N ′t =

M t = Φ0Ej,new. Thus,

bprob,term2 := max(bprob,term21, bprob,term22, bprob,term23) ≤ 1

(1− b)2
(rζ
√
rγ +

√
rnewγnew)2

bprob,term3 ≤
1

(1− b)2

(2rζ
√
rγ +

√
rnewγnew)

1− b (rζ
√
rγ +

√
rnewγnew)

≤ 1

(1− b)3
(2rζ
√
rγ +

√
rnewγnew)2

Use bprob to denote an upper bound on max(bprob,term2, bprob,term3). Then

bprob =
1

(1− b)3
(2rζ
√
rγ +

√
rnewγnew)2

Using (4.24), (4.23) and Lemma C.1.9,

λmin(Au) ≥ λmin(
1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τEnew
′Φ0ΣτΦ0Enew)− 4ε

≥ 1

1− b2
(1− b2

α(1− b2)
) min
τ∈[t0,t0+α−1]

λmin(Enew
′Φ0ΣτΦ0Enew)− 4ε

w.p. at least 1− 4 · (2n) exp
(

−αε2
32(bprob)2

)
. Using Fact 4.6.3, and Ostrowski’s theorem, we

get

λmin(Enew
′Φ0ΣτΦ0Enew) ≥ λmin(RnewΛτ,newR

′
new) ≥ λmin(RnewR

′
new)λmin(Λτ,new)

≥ (1− (ζ+
∗ )2)λ−new

Thus, using 1/α ≤ (rnewζ)2,

λmin(Au) ≥ (1− b2

α(1− b2)
)(1− (ζ+

∗ )2)
λ−new

1− b2
− 4ε

≥ bA :=
1

1− b2

(
(1− (ζ+

∗ )2)λ−new − (rnewζ)2 b2

1− b2
(1− (ζ+

∗ )2)λ−new

)
− 4ε

w.p. at least 1− pA with pA := 4 · (2n) exp
(

−αε2
32(bprob)2

)
.

Proof of Lemma 4.5.35. In this proof all probabilistic statements are conditioned on

Xûj+k−1 for Xûj+k−1 ∈ Γ
ûj
j,k−1 for ûj = uj or uj + 1. We need to upper bound the
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maximum eigenvalue of

Au,⊥ :=
1

α

∑
t∈Ju

Enew,⊥
′Φ0`t`t

′Φ0Enew,⊥.

Let t0 be the first time instant of Jûj+k. We proceed as in Section 4.6.1 with N ′t =

M t = Φ0Enew,⊥. Thus,

bprob,term2 = max(bprob,term21, bprob,term22, bprob,term23) =
1

(1− b)2
(rζ)2rγ2

bprob,term3 ≤
1

(1− b)3
(2rζ
√
rγ)2.

Use bprob to denote the upper bound on max(bprob,term2, bprob,term3). Then

bprob =
1

(1− b)3
(2rζ
√
rγ)2

Using (4.22), (4.21) and (4.20)

bterm1 =
(rnewζ)2b2

(1− b2)
max

t∈[t0,t0+α−1]
λmax(Enew,⊥

′Φ0(`t0−1`t0−1
′)Φ0Enew,⊥)

≤ (rnewζ)2b2

(1− b2)

(rγ2)

(1− b)2
≤ 0.05(rnewζ)b2λ−

(1− b2)(1− b)2

(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and

λmax(Au,⊥) ≤ λmax(
1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τEnew,⊥
′Φ0ΣτΦ0Enew,⊥) + bterm1 + 4ε

≤ 1

1− b2
max

τ∈[t0,t0+α−1]
λmax(Enew,⊥

′Φ0ΣτΦ0Enew,⊥)) + bterm1 + 4ε

w.p. at least 1− 4 · (2n) exp
(

−αε2
32(bprob)2

)
Using Fact 4.6.3, λmax(Enew,⊥

′Φ0ΣτΦ0Enew,⊥)) ≤ (rζ)2λ+. Thus,

λmax(Au,⊥) ≤ 1

1− b2
(rζ)2λ+ +

0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+ 4ε ≤ bA,⊥

w.p. at least 1− pA,⊥ with pA,⊥ := 4 · (2n) exp
(

−αε2
32(bprob)2

)
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Proof of Lemma 4.5.36. In this proof all probabilistic statements are conditioned on

Xûj+k−1 for Xûj+k−1 ∈ Γ
ûj
j,k−1 for ûj = uj or uj + 1. Using the expression for Hu

given in Definition 4.5.15, and noting that for a basis matrix E, EE′ +E⊥E⊥
′ = I we

get that

Hu =
1

α

∑
t∈Ju

(
Φ0etet

′Φ0 − (Φ0`tet
′Φ0 + Φ0et`t

′Φ0) + (F t + F t
′)
)

where

F t = Enew,⊥Enew,⊥
′Φ0`t`

′
tΦ0EnewEnew

′.

Thus,

‖Hu‖2 ≤ 2

∥∥∥∥ 1

α

∑
t

Φ0`tet
′
∥∥∥∥

2

+

∥∥∥∥ 1

α

∑
t

etet
′
∥∥∥∥

2

+ 2

∥∥∥∥ 1

α

∑
t

F t

∥∥∥∥
2

(4.25)

Next we obtain high probability bounds on each of the three terms on the right hand

side of (4.25) using the Azuma corollaries.

The `te
′
t term. Consider the first term. Using Fact 4.6.3 and the expression for et

from (4.11),

1

α

∑
t

Φ0`tet
′ =

1

α

∑
t

Φ0`t(`t + wt)
′Φk−1ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′ − 1

α

∑
t

Φ0`tw
′
t

:= term + termw, where

term :=
1

α

∑
t

Φ0`t`
′
tΦk−1ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′,

termw :=
1

α

∑
t

Φ0`tw
′
tΦk−1ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′ − 1

α

∑
t

Φ0`tw
′
t

Here we use termw to refer to the sum of all terms containing wt.

By following the approach of Section 4.6.2, under the given conditioning,

‖termw‖2 ≤ 2ε

w.p. at least 1− 2 · (2n) exp
(

−αε2
32(bprob,termw)2

)
where

bprob,termw = (φ+)
(2rγ
√
rγ +

√
rnewγnew)εw

1− b
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We proceed as in Section 4.6.1 for term. In this case, N t = Φ0 and M t = Φk−1ITt

[(Φt)Tt
′(Φt)Tt ]

−1ITt
′. Thus

bprob,term2 = max(bprob,term21, bprob,term22, bprob,term23) ≤ 1

(1− b)2
φ+(ζ+

∗
√
rγ +

√
rnewγnew)2

bprob,term3 ≤
1

(1− b)3
φ+(2rζ

√
rγ +

√
rnewγnew)2

Use bprob to denote the upper bound on max(bprob,term2, bprob,term3). Then

bprob =
1

(1− b)3
φ+(2rζ

√
rγ +

√
rnewγnew)2

Using (4.20), (4.22) and (4.21),

bterm1 =
(rnewζ)2b2

(1− b2)
max
t
‖Φ0`t0−1`

′
t0−1Φk−1ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′‖2 ≤
(rnewζ)2b2

(1− b2)

(rγ2)

(1− b)2

≤ 0.05(rnewζ)b2λ−

(1− b2)(1− b)2

(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and

‖term‖2 ≤ ‖
1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τΦ0ΣτΦk−1ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′‖2 + bterm1 + 4ε

w.p. at least 1− 4 · (2n) exp
(

−αε2
32(bprob)2

)
.

First consider the k = 1 case. In this case, Φk−1 = Φ0. By Lemma 4.5.23, under the

given conditioning, ‖Pnew
′Φ0ITt‖2 = ‖ITt ′Φ0Pnew‖2 ≤ κ+

s,new = 0.0215. Using this and

Fact 4.6.3,

‖ 1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τΦ0ΣτΦk−1ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′‖2 ≤

1

1− b2
φ+((ζ+

∗ )2λ++κ+
s,newλ

+
new)

and so for k = 1,

‖ 1

α

∑
t

Φ0`tet
′‖2 ≤

1

1− b2
φ+((ζ+

∗ )2λ+ + κ+
s,newλ

+
new) +

0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+ 6ε

w.p. at least 1− p`e with p`e := 4 · (2n) exp
(

−αε2
32(bprob)2

)
+ 2 · (2n) exp

(
−αε2

32(bprob,termw)2

)
.
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For k > 1, we cannot use Lemma 4.5.23. Thus, we follow a different approach - we use

Lemma C.1.6 (Cauchy-Schwartz for sums of matrices) followed by Lemma 4.5.22 (support

change lemma). Let X t :=
∑t

τ=t0
b2t−2τΦ0ΣτΦk−1 and Y t := ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′.

Then by Lemma C.1.6 (Cauchy-Schwartz),

‖ 1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τΦ0ΣτΦk−1ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′‖2

≤

√√√√λmax(
1

α

t0+α−1∑
t=t0

X tX
′
t)λmax(

1

α

t0+α−1∑
t=t0

Y tY
′
t)

Now,

λmax(
1

α

t0+α−1∑
t=t0

X tX
′
t) ≤ max

t
‖X t‖2 ≤

(
t∑

τ=t0

b2t−2τ max
τ
‖Φ0ΣτΦk−1‖2

)2

≤
(

1

1− b2
((ζ+
∗ )2λ+ + ζ+

new,k−1λ
+
new)

)2

By Lemma 4.5.22 (support change lemma)

λmax(
1

α

t0+α−1∑
t=t0

Y tY
′
t) ≤ ρ2h+(φ+)2,

Thus,

‖ 1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τΦ0ΣτΦk−1ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′‖2

≤
√
ρ2h+(φ+)2

(
1

1− b2
((ζ+
∗ )2λ+ + ζ+

new,k−1λ
+
new)

)
and so for k > 1,

‖ 1

α

∑
t

Φ0`tet
′‖2 ≤

√
ρ2h+(φ+)2

1

1− b2

(
(ζ+
∗ )2λ+ + ζ+

new,k−1λ
+
new

)
+

0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+ 6ε

with probability at least 1− p`e, where

p`e := 4 · (2n) exp

( −αε2
32(bprob)2

)
+ 2 · (2n) exp

( −αε2
32(bprob,termw)2

)
.
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The ete
′
t term. Consider the second term. Using Fact 4.6.3 and the expression for

et from (4.11),

1

α

∑
t

ete
′
t = term + termw, where

term :=
1

α

∑
t

ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′Φk−1(`t`

′
t)Φk−1ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

termw :=
1

α

∑
t

ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′Φk−1(−wtw

′
t − `tw′t) + wtw

′
t+

1

α

∑
t

(−wtw
′
t −wt`

′
t)Φk−1ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′+

1

α

∑
t

ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′Φk−1(`tw

′
t + wtw

′
t + wt`

′
t)Φk−1ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

Consider the wtw
′
t part of termw. Let N t = ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′Φk−1. Using Lemma

4.5.22 (support change lemma), the bound on ε2w and Lemma C.1.6 (Cauchy-Schwartz),

‖ 1

α

∑
t

N twtw
′
t‖2 ≤

√
‖ 1

α

∑
t

N tN
′
t‖2‖

1

α

∑
t

wtw′twtw′t‖2 ≤
√
ρ2h+(φ+)2ε2w

Using Lemma 4.5.22 (support change lemma), we have

‖ 1

α

∑
t

N twtw
′
tN
′
t‖2 ≤ ρ2h+(φ+)2ε2w

The `tw
′
t in termw can be bounded by ε using the approach of Section 4.6.2. Thus, using

the bound on ε2w from the theorem,

‖termw‖2 ≤ (1 + 2
√
ρ2h+φ+ + 2ρ2h+(φ+)2)(0.03ζλ−) + 4ε ≤ 2(φ+)2(0.03ζλ−) + 4ε

w.p. at least 1− 4 · (2n) exp
(

−αε2
32(bprob,termw)2

)
. Here

bprob,termw = (φ+)2 (2rζ
√
rγ +

√
rnewγnew)εw

1− b .

For term, we proceed as in Section 4.6.1 withN ′t = M t = Φk−1ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′.

Thus,

bprob,term2 = max(bprob,term21, bprob,term22, bprob,term23) ≤ 1

(1− b)2
(φ+)2(ζ+

∗
√
rγ +

√
rnewγnew)2

bprob,term3 ≤
1

(1− b)3
(φ+)2(2rζ

√
rγ +

√
rnewγnew)2
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Use bprob to denote the upper bound on max(bprob,term2, bprob,term3). Then

bprob =
1

(1− b)3
(φ+)2(2rζ

√
rγ +

√
rnewγnew)2

Using (4.20), (4.22), (4.21), we get

bterm1 ≤
(rnewζ)2b2

(1− b2)

rγ2

(1− b)2
≤ 0.05(rnewζ)b2λ−

(1− b2)(1− b)2

(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and

‖term‖2 ≤‖
1

α

t0+α−1∑
t=t0

ITt

(
t∑

τ=t0

b2t−2τ [(Φt)Tt
′(Φt)Tt ]

−1ITt
′ΦKΣτΦKITt [(Φt)Tt

′(Φt)Tt ]
−1

)
ITt
′‖2

+ bterm1 + 4ε

w.p. at least 1 − 4 · (2n) exp
(

−αε2
32(bprob)2

)
. By using Lemma 4.5.22 (support change

lemma) and Lemma 4.5.23 for k = 1 and by using only Lemma 4.5.22 (support change

lemma) for k > 1, we get

‖ 1

α

∑
t

ete
′
t‖2 ≤ bee

w.p. at least 1− pee with pee := 4 · (2n) exp
(

−αε2
32(bprob)2

)
+ 4 · (2n) exp

(
−αε2

32(bprob,termw)2

)
.

The F t term. Consider the smallest term,
∥∥ 1
α

∑
t F t

∥∥
2

= ‖Enew,⊥Enew,⊥
′Φ0`t`

′
tΦ0Enew

Enew
′‖2. We again proceed as in Section 4.6.1. In this case N t = Enew,⊥Enew,⊥

′Φ0 and

M t = Φ0EnewEnew
′. Thus,

bprob,term2 ≤
1

(1− b)2
(ζ+
∗
√
rγ)(2ζ+

∗
√
rγ +

√
rnewγnew)

bprob,term3 ≤
1

(1− b)3
(ζ+
∗
√
rγ)(2ζ+

∗
√
rγ +

√
rnewγnew)

and so

bprob =
1

(1− b)3
(ζ+
∗
√
rγ)(2ζ+

∗
√
rγ +

√
rnewγnew)

‖ 1

α

∑
t

F t‖2 ≤
1

1− b2
(ζ+
∗ )2λ+ +

0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+ 4ε

w.p. at least 1 − pF with pF := 4 · (2n) exp
(

−αε2
32(bprob)2

)
. Combining the bounds on the

three terms on the RHS of (4.25) we get the final result of this lemma.
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4.7 Proof Of Deletion Azuma Lemmas - Lemma 4.5.38 And

Lemmas 4.5.39, 4.5.40, 4.5.41

4.7.1 Proof of Lemma 4.5.38

Proof of Lemma 4.5.38. In this proof, all of the probabilistic statements are conditioned

on Xûj+K for Xûj+K ∈ Γ
ûj
j,K for ûj = uj or uj + 1.

Let t0 := t̂cl. Using Fact 4.5.24, under the given conditioning, for all t ∈ [t0, t0+α−1],

E[νtν
′
t] = Σt = Σ(j) := P(j)Λ(j)P(j)

′ (4.26)

We need to bound f = ‖ 1
α

∑t0+α−1
t=t0

`t`t
′ − 1

1−b2 Σ(j)‖2. Let

ε :=
1

1− b2
0.001rnewζλ

−

To do this we can proceed as in Section 4.6.1 with N t = M ′
t = I but with one

change. We include the constant term − 1
1−b2 Σ(j) in term21. Thus,

bprob,term2 ≤
2

(1− b)2
(
√
rγ)2

bprob,term3 ≤
1

(1− b)3
(
√
rγ)2

Let

fterm21 := ‖ 1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τΣτ −
1

1− b2
Σ(j)‖2.

Using (4.20), (4.22), (4.21), we get

bterm1 =
(rnewζ)2b2

(1− b2)
max
t
‖`t0−1`t0−1

′‖2 ≤
(rnewζ)2b2

(1− b2)

(rγ2)

(1− b)2
≤ 0.05(rnewζ)b2λ−

(1− b2)(1− b)2

and

f ≤ fterm21 + bterm1 + 4ε

w.p. at least 1− 3 · (2n) exp
(

−αε2
32(bprob,term2)2

)
− (2n) exp

(
−αε2

32(bprob,term3)2

)
.
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Since Στ = Σ(j) := P(j)Λ(j)P(j)
′ for this interval, using Lemma C.1.9 and using the

bound on 1/α from Fact 4.5.24,

fterm21 = ‖ 1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τΣ(j) −
1

1− b2
Σ(j)‖2

= ‖ 1

1− b2
(1− 1

α

b2(1− b2α)

1− b2
)Σ(j) −

1

1− b2
Σ(j)‖2

≤ 1

α

b2

(1− b2)2
‖Σ(j)‖2 ≤ (rnewζ)2 b2

(1− b2)2
λ+ ≤ (rnewζ)

b2

(1− b2)2
0.05λ−

Thus,

f ≤ (rnewζ)
b2

(1− b2)2
0.05λ− +

0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+ 4ε ≤ q2

w.p. at least 1− pcl where pcl := 4 · (2n) exp
(
−αε2(1−b)6

32·4r2γ4

)
.

4.7.2 Definitions and preliminaries for proofs of Lemmas 4.5.39, 4.5.40,

4.5.41

Definition 4.7.1. Define

1. Gj,1,det := [.] and for k = 2, 3, . . . ϑ, Gj,k,det := [Gj,1 Gj,2 . . . Gj,k−1].

2. Define Gj,k,undet := [Gj,k+1 Gj,k+2 . . . Gj,ϑj ], Gj,k,cur := Gj,k;

3. Define Ĝj,1,det = [.] and Ĝj,k,det := [Ĝj,1 Ĝj,2 . . . Ĝj,k−1]

4. Ψj,k := (I− Ĝj,k,detĜj,k,det
′); thus Ψj,1 = I

5. Dj,k,cur := Ψj,kGj,k,cur, Dj,k,det := Ψj,kGj,k,det, Dj,k,undet := Ψj,kGj,k,undet;

Definition 4.7.2.

1. Let Dj,k,cur := Ψj,kGj,k,cur
QR
= Ej,k,curRj,k,cur denote its reduced QR decomposition.

So Ej,k,cur is a basis matrix, and Rj,k,cur is upper triangular. Let Ej,k,cur,⊥ be a

basis matrix for the orthogonal complement of range(Ej,k,cur).
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2. Using Ej,k,cur and Ej,k,cur,⊥ , define

Ãj,k :=
1

α

∑
t∈Ĩj,k

Ej,k,cur
′Ψj,k`t`t

′Ψj,kEj,k,cur

Ãj,k,⊥ :=
1

α

∑
t∈Ĩj,k

Ej,k,cur,⊥
′Ψj,k`t`t

′Ψj,kEj,k,cur,⊥

and let

Ãj,k :=

[
Ej,k,curEj,k,cur,⊥

]Ãj,k 0

0 Ãj,k,⊥


 Ej,k,cur

′

Ej,k,cur,⊥′


3. Define

H̃j,k =
1

α

∑
t∈Ĩj,k

Ψj,k
ˆ̀
t
ˆ̀
t
′Ψj,k − Ãj,k

From Algorithm 4,

1

α

∑
t∈Ĩj,k

Ψj,k
ˆ̀
t
ˆ̀
t
′Ψj,k

EVD
=

[
Ĝj,k Ĝj,k,⊥

]Λ̂t 0

0 Λ̂t,⊥


 Ĝj,k

′

Ĝj,k,⊥′

 .
Lemma 4.7.3. [44] When X(ûj+K+1)+k−1 ∈ Γ̃aj,k−1 with a = uj or a = uj + 1,

1. ‖Dj,k,det‖2 ≤ rζ

2.
√

1− (r)2ζ2 ≤ σi(Rj,k,cur) = σi(Dk,cur) ≤ 1

3. ‖Ej,k,cur
′Dj,k,undet‖2 ≤

(rζ)2√
1− (r)2ζ2

4.

Ψj,kΣtΨj,k = [Dj,k,det Dj,k,cur Dj,k,undet]


Λt,det 0 0

0 Λt,cur

0 0 Λt,undet



Dj,k,det

Dj,k,cur

Dj,k,undet


′

with λmax(Λt,det) ≤ λ+, λ−j,k ≤ λmin(Λt,cur) ≤ λmax(Λt,cur) ≤ λ+
j,k, λmax(Λt,undet) ≤

λ+
j,k+1.
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5. Using the first four claims, it is easy to see that

(a) ‖Ej,k,cur,⊥′Ψj,kΣtΨj,kEj,k,cur,⊥‖2 ≤ (rζ)2λ+ +λ+
k+1 (when k = 1, the first term

disappears)

(b) ‖Ej,k,cur,⊥′Ψj,kΣtΨj,kEj,k,cur‖2 ≤ (rζ)2λ+ + (rζ)2√
1−(r)2ζ2

λ+
k+1 (when k = 1, the

bound equals zero)

(c) ‖Ψj,kΣtΦj,K‖2 ≤ ((rζ)λ+ + λ+
k )(r + rnew)ζ

(d) ‖Φj,KΣtΦj,K‖2 ≤ ((r + rnew)ζ)2λ+

Proof. Consider the first claim. When k = 1, Gk,det = [.] and hence Dj,k,det = [.]. Thus

‖Dj,k,det‖2 = 0 ≤ rζ. For k > 1, it follows by applying Lemmas 4.5.31 and 4.5.21

applied for k̃ = 1, 2, . . . , k − 1. The next two claims follow using Lemma C.1.1. Notice

that Dk,cur = Ψj,kGj,k,cur where Ψj,k = (I − Ĝj,k,detĜj,k,det
′). Use item 4 of Lemma

C.1.1 and the fact that Gj,k,det
′Gj,k,cur = 0 to get the second claim. For the third claim,

notice that Ej,k,cur
′Dj,k,undet = R−1

j,k,curGj,k,cur
′Ψj,kΨj,kGj,k,undet. Use the previous claim

to bound ‖R−1
j,k,cur‖2. Use item 3 of Lemma C.1.1 and the facts that Gj,k,det

′Gj,k,cur = 0

and Gj,k,det
′Gk,undet = 0 to bound ‖Gj,k,cur

′Ψj,k‖2 and ‖Ψj,kGj,k,undet‖2 respectively.

When k = 1, both the above claims follow even more easily: Dk,cur = Gk,cur and so

σi(Dk,cur) = 1 and thus satisfies the given bounds; also, Ek,cur = Gk,cur and Dk,undet =

Gk,undet and thus, ‖Ej,k,cur
′Dj,k,undet‖2 = 0 ≤ (rζ)2√

1−(r)2ζ2
.

The fourth claim just uses the definitions and Model 8.

4.7.3 Proofs of Lemmas 4.5.39, 4.5.40, 4.5.41

We remove the subscript j at various places in this section.

Proof of Lemma 4.5.39. In this proof all probabilistic statements are conditioned on

X(ûj+K+1)+k−1 for all X(ûj+K+1)+k−1 ∈ Γ̃aj,k−1 with a = uj or a = uj + 1. Recall that

Ãk := 1
α

∑
t∈Ĩj,k Ek,cur

′Ψk`t`t
′ΨkEk,cur. We proceed as in Section 4.6.1. In this case
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N ′t = M t = ΨkEk,cur and t0 is the first time instant of Ĩj,k. Thus,

λmin(Ãk) ≥ λmin(
1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τEk,cur
′ΨkΣτΨkEk,cur)− 4ε

≥ 1

1− b2
(1− b2

α(1− b2)
) min
τ∈[t0,t0+α−1]

λmin(Ek,cur
′ΨkΣτΨkEk,cur)− 4ε

with probability at least 1− 4 · (2n) exp
(
− αε2

32b2prob

)
, where bprob = rγ2

(1−b)2 .

Finally, using Lemma 4.7.3 and Ostrowski’s theorem,

λmin(Ãk) ≥
1

1− b2
(1− b2

α(1− b2)
)(1− (rζ)2)λ−k

Proof of Lemma 4.5.40. In this proof all probabilistic statements are conditioned on

X(ûj+K+1)+k−1 for all X(ûj+K+1)+k−1 ∈ Γ̃aj,k−1 with a = uj or a = uj + 1.

Recall that Ãk,⊥ := 1
α

∑
tEk,cur,⊥

′Ψk`t`t
′ΨkEk,cur,⊥.

We proceed as in Section 4.6.1. In this case N ′t = M t = ΨkEk,cur,⊥. Thus,

bterm1 =
(rnewζ)2b2

(1− b2)
max

t∈[t0,t0+α−1]
λmax(Ek,cur,⊥

′Ψk(`t0−1`t0−1
′)ΨkEk,cur,⊥) ≤ (rnewζ)2b2

(1− b2)

(rγ2)

(1− b)2

≤ 0.05(rnewζ)b2λ−

(1− b2)(1− b)2

(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and

λmax(Ãk,⊥) ≤ λmax(
1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τEk,cur,⊥
′ΨkΣτΨkEk,cur,⊥) + bterm1 + 4ε

≤ 1

1− b2
max

τ∈[t0,t0+α−1]
λmax(Ek,cur,⊥

′ΨkΣτΨkEk,cur,⊥) + bterm1 + 4ε

with probability at least 1− 4 · (2n) exp
(
− αε2

32b2prob

)
, where bprob = rγ2

(1−b)2 .

Thus, using Lemma 4.7.3,

λmax(Ãk,⊥) ≤ 1

1− b2
((rζ)2λ+ + λ+

k+1) +
0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+ 4ε
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Proof of Lemma 4.5.41. In this proof all probabilistic statements are conditioned on

X(ûj+K+1)+k−1 for all X(ûj+K+1)+k−1 ∈ Γ̃aj,k−1 with a = uj or a = uj + 1. Recall that

Ψj,1 = I.

In a fashion similar to the proof of Lemma 4.5.36, we can show that

‖H̃k‖2 ≤ 2

∥∥∥∥ 1

α

∑
t

Ψk`tet
′
∥∥∥∥

2

+

∥∥∥∥ 1

α

∑
t

etet
′
∥∥∥∥

2

+ 2

∥∥∥∥ 1

α

∑
t

F t

∥∥∥∥
2

(4.27)

where

F t = Ek,curEk,cur
′Ψk`t`t

′ΨkEk,cur,⊥Ek,cur,⊥
′.

We now bound the three terms above.

Consider ‖ 1
α

∑
t Ψk`tet

′‖2. Using Lemma 4.5.25, et satisfies (4.11) with probability

one under the given conditioning. Thus,

1

α

∑
t

Ψk`tet
′ =

1

α

∑
t

Ψk`t(`t + wt)
′ΦKITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′ − 1

α

∑
t

Ψk`tw
′
t

=
1

α

∑
t

Ψk`t`
′
tΦKITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′ +
1

α

∑
t

Ψk`tw
′
tΦKITt [(Φt)Tt

′(Φt)Tt ]
−1

ITt
′ − 1

α

∑
t

Ψk`tw
′
t

:= term + termw

Here termw refers to the terms containing wt. By following the approach of Section

4.6.2, under given conditions,

‖termw‖2 ≤ 2ε

w.p. at least 1− 2 · (2n) exp
(

−αε2
32(bprob,termw)2

)
, where

bprob,termw =
φ+
√
rγεw

1− b .

We proceed as in Section 4.6.1 for term. In this case N t = N 0 = Ψk and M t =

ΦKITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′. Thus,

bterm1 ≤
(rnewζ)2b2

(1− b2)

φ+(rγ2)

(1− b)2
≤ 0.05(rnewζ)b2λ−

(1− b2)(1− b)2
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(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and

‖term‖2 ≤ ‖
1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τΨkΣτΦKITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′‖2 + bterm1 + 4ε

w.p. at least 1− 4 · (2n) exp
(

−αε2
32(bprob)2

)
, where

bprob =
φ+rγ2(r + rnew)ζ

(1− b)2
.

Let

1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τΨkΣτΦKITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′ :=

1

α

t0+α−1∑
t=t0

X tY
′
t

where X t :=
∑t

τ=t0
b2t−2τΨkΣτΦK and Y t := ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′. By Lemma 4.5.22

(support change lemma) λmax( 1
α

∑t0+α−1
t=t0

Y tY
′
t) ≤ ρ2h+(φ+)2.

By Lemma 4.7.3 and the fact that ‖ΦKP∗‖2 ≤ ζ+
∗ = rζ and ‖ΦKPnew‖2 ≤ rnewζ,

λmax(
1

α

t0+α−1∑
t=t0

X tX
′
t) ≤ max

t
‖X t‖2 ≤ (

1

1− b2
(r + rnew)ζ((rζ)λ+ + λ+

k ))2

Thus, by Cauchy-Schwartz for matrices,

‖ 1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2t−2τΨkΣτΦKITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′‖2

≤
√
ρ2h+(φ+)2(

1

1− b2
(r + rnew)ζ((rζ)λ+ + λ+

k ))

Thus, with probability at least 1− pl̃e,∥∥∥∥ 1

α

∑
t

Ψk`tet
′
∥∥∥∥

2

≤
√
ρ2h+(φ+)2(

1

1− b2
(r+rnew)ζ((rζ)λ+ +λ+

k ))+
0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+6ε

where pl̃e = 2 · (2n) exp
(

−αε2
32(bprob,termw)2

)
+ 4 · (2n) exp

(
−αε2

32(bprob,term)2

)
.

Next consider the ete
′
t term.
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Recall that, under the given conditioning, et = ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′ΦK(`t + wt)−

wt. Thus,

1

α

∑
t

ete
′
t = term + termw, where

term :=
1

α

∑
t

ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′ΦK(`t`

′
t)ΦKITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

termw :=
1

α

∑
t

ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′ΦK(−wtw

′
t − `tw′t) + wtw

′
t+

1

α

∑
t

(−wtw
′
t −wt`

′
t)ΦKITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′+

1

α

∑
t

ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′ΦK(`tw

′
t + wtw

′
t + wt`

′
t)ΦKITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

For the wtw
′
t part of termw, let N t = ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′ΦK . Using Lemma C.1.6

(Cauchy-Schwartz), Lemma 4.5.22 (support change lemma) and the bound on ε2w, we

have

‖ 1

α

∑
t

N twtw
′
t‖2 ≤

√
‖ 1

α

∑
t

N tN
′
t‖2‖

1

α

∑
t

wtw′twtw′t‖2 ≤
√
ρ2h+(φ+)2ε2w

Using Lemma 4.5.22 (support change lemma), we have

‖ 1

α

∑
t

N twtw
′
tΦKN

′
t‖2 ≤ ρ2h+(φ+)2ε2w

The `tw
′
t in termw can be bounded by ε using the approach of Section 4.6.2. Thus,

‖termw‖2 ≤ (1 + 2
√
ρ2h+φ+ + 2ρ2h+(φ+)2)(0.03ζλ−) + 4ε ≤ 2(φ+)2(0.03ζλ−)

w.p. at least 1− 4 · (2n) exp
(

−αε2
32(bprob,termw)2

)
where

bprob,termw = (φ+)2 (2rγ
√
rγ +

√
rnewγnew)εw

1− b .

For term, we proceed as in Section 4.6.1 with N ′t = M t = ΦKITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′.

Thus,

bprob,term2 = max(bprob,term21, bprob,term22, bprob,term23) ≤ 1

(1− b)2
(φ+)2(ζ+

∗
√
rγ +

√
rnewγnew)2

bprob,term3 ≤
1

(1− b)3
(φ+)2(2rζ

√
rγ +

√
rnewγnew)2
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Use bprob to denote the upper bound on max(bprob,term2, bprob,term3). Then

bprob =
1

(1− b)3
(φ+)2(2rζ

√
rγ +

√
rnewγnew)2

Using (4.20), (4.22), (4.21), we get

bterm1 ≤
(rnewζ)2b2

(1− b2)

(rγ2)

(1− b)2
≤ 0.05(rnewζ)b2λ−

(1− b2)(1− b)2

(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and

‖term‖2 ≤‖
1

α

t0+α−1∑
t=t0

ITt

(
t∑

τ=t0

b2t−2τ [(Φt)Tt
′(Φt)Tt ]

−1ITt
′ΦKΣτΦKITt [(Φt)Tt

′(Φt)Tt ]
−1

)
ITt
′‖2

+ bterm1 + 4ε

w.p. at least 1 − 4 · (2n) exp
(

−αε2
32(bprob)2

)
. By Lemma 4.5.22 (support change lemma),

Lemma 4.7.3, and the fact that ‖ΦKP∗‖2 ≤ ζ+
∗ = rζ and ‖ΦKPnew‖2 ≤ rnewζ,

‖ 1

α

t0+α−1∑
t=t0

ITt

(
t∑

τ=t0

b2t−2τ [(Φt)Tt
′(Φt)Tt ]

−1ITt
′ΦKΣτΦKITt [(Φt)Tt

′(Φt)Tt ]
−1

)
ITt
′‖2

≤ ρ2h+ (φ+)2 1

1− b2
((r + rnew)ζ)2λ+

Combining all the bounds from above,

‖ 1

α

∑
t

ete
′
t‖2 ≤ ρ2h+ (φ+)2 1

1− b2
((r+rnew)ζ)2λ++

0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+(φ+)22(0.03ζλ−)+8ε

w.p. at least 1− pẽe with pẽe := 4 · (2n) exp
(

−αε2
32(bprob)2

)
+ 4 · (2n) exp

(
−αε2

32(bprob,termw)2

)
.

Finally consider

∥∥∥∥ 1
α

∑
t F t

∥∥∥∥
2

= ‖ 1
α

∑
tEk,curEk,cur

′Ψk`t`t
′ΨkEk,cur,⊥Ek,cur,⊥

′‖2. We

proceed as in Section 4.6.1. Here N t = Ek,curEk,cur
′Ψk and M t = ΨkEk,cur,⊥Ek,cur,⊥

′.

Thus, we get

bterm1 ≤
(rnewζ)2b2

(1− b2)

(rγ2)

(1− b)2
≤ 0.05(rnewζ)b2λ−

(1− b2)(1− b)2

(we can get a tighter bound for the above, but do not need it and hence do not pursue

it) and

‖ 1

α

∑
t

F t‖2 ≤
1

1− b2
max

τ∈[t0,t0+α−1]
‖Ek,curEk,cur

′ΨkΣτΨkEk,cur,⊥Ek,cur,⊥
′‖2 + bterm1 + 4ε
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By Lemma 4.7.3,

‖Ek,curEk,cur
′ΨkΣτΨkEk,cur,⊥Ek,cur,⊥

′‖2 ≤ (rζ)2λ+ +
(rζ)2√

1− (rζ)2
λ+
k+1

Thus,

‖ 1

α

∑
t

F t‖2 ≤
1

1− b2

(
(rζ)2λ+ +

(rζ)2√
1− (rζ)2

λ+
k+1

)
+

0.05(rnewζ)b2λ−

(1− b2)(1− b)2
+ 4ε

with probability at least 1− pF̃ , where pF̃ = 4 · (2n) exp
(

−αε2
32(bprob)2

)
, with bprob = rγ2

(1−b)2 .

Combining the bounds on the three terms above, we get the final result of the lemma.

4.8 Automatically Setting Algorithm Parameters And

Simulation Experiments

4.8.1 Automatically setting algorithm parameters

The algorithm has five parameters. As explained in [64], one can set ξt = ‖Φt
ˆ̀
t−1‖2.

One can either set ωt = 7ξt or one can use the average image pixel intensity to set it.

In [64], they used ω = q
√
‖mt‖2

2/n with q = 1 when it was known that ‖xt‖2 is of

the same order as ‖`t‖2; and q = 0.25 when ‖xt‖2 was known to be much smaller (the

case of foreground moving objects whose intensity is very similar to that of background

objects). There is no good heuristic to pick α except that αadd should be large enough

compared to rnew and αdel should be large enough compared to r. We used α = 100 and

K = 12 in our experiments. We need K to be large enough so that the new subspace is

accurately recovered at the end of K projection-PCA iterations. Thus, one way to set K

indirectly is as follows: do projection-PCA for at least Kmin times, but after that stop

when there is not much difference between P̂j,new,k
′ˆ̀
t and P̂j,new,k+1

′ˆ̀
t [44, 64]. This,

along with imposing an upper bound on K works well in practice [64]. We can set ĝ+

as suggested in [44]; by applying any clustering algorithm from literature, e.g., k-means



www.manaraa.com

163

clustering or split-and-merge and then finding the maximum condition number of any

cluster. This can be applied to the empirical covariance matrix used in the clustering

step of cluster-PCA.

4.8.2 Simulated data

Here we used simulated data to compare performance of PCP [32], mod-PCP [86],

GRASTA [80], RSL [79] and Automatic ReProCS-cPCA. We generated data as explained

in Sec. 4.2, with n = 256, J = 3, r0 = 40, ttrain = 200, tmax = 8200. We generated `t

as in Model 5 and Model 8 with rj,new = 4, rj,old = 4, j = 1, 2, 3, t1 = 700, t2 = 3700,

t3 = 6200, ϑ = 3, b = 0.1. The subspace [P 0,P t1,new,P t2,new,P t3,new] was generated by

orthonormalizing an n× (r0 + r1,new + r2,new + r3,new) matrix of iid Gaussian entries. The

coefficients at,∗ := P ∗j,∗νt, were generated as follows. They were divided into three clus-

ters. The coefficeints of the first cluster were iid uniformly distributed over [−100, 100],

those of the second cluster were iid uniform over [−10, 10], and those of the third cluster

were iid uniform over [−1, 1]. We generated at,new := P ∗j,newνt iid uniform over [−1, 1]

for the first 1700 time units after the subspace change. After that, it was in one of

the three intervals. The sparse matrix S was generated as in Model 4 with s = 10,

ρ = 2. The support of xt started from the top, and moved down by 5 indices every

β = 25 time instants. Once it reached the bottom, it started from the top again. We

set (xt)i ∼ Unif[xmin, 3xmin] for all i ∈ Tt with xmin = 20. We ran Automatic ReProCS-

cPCA with α = 100, K = 12, ξ =
√
rnew/2γnew, ω = (xmin − 14ξ)/2. We used P̂ 0

for modified-PCP as partial knowledge. We solved PCP and modified-PCP every 200

frames by using the observations of the last 200 frames as the matrix M. In Fig. 4.4,

where the averaged sparse part errors over 50 Monte Carlo simulations are shown, we

can see Automatic ReProCS-cPCA outperforms all the other algorithms. We can also

see jumps in the Automatic ReProCS-cPCA error at the time instants at which there is

a subspace change, and then decays exponentially. This is what is seen from the bounds
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Figure 4.4: Average error comparisons for fully simulated data and for the sequence with the
lake background and simulated block object

given in Theorem 4.2.8 and Corollary 4.2.11.

4.8.3 Lake background sequence with simulated foreground

The lake background sequence used is the same as the one used in [64]. The back-

ground consisted of a video of moving lake waters. The foreground is a simulated moving

rectangular object. The sequence is of size 72 × 90 × 1500, and we used the first 1420

frames as training data (after subtracting the empirical mean of the training images).

The rest 80 frames (after subtracting the same mean image) served as the background L

for the test data. For the first frame of test data, we generated a rectangular foreground

support with upper left vertex (20, 5 + j0) and lower right vertex (40 + i1, 30 + j0), where

j0 ∼ Unif[0, 30] and i1 ∼ Unif[0, 5], and the foreground moves to the right 1 column each

time. Then we stacked each image as a long vector `t of size 6480 × 1. For each index

i belonging to the support set of foreground xt, we assign (xt)i = 185 − (`t)i. We set

M = L + S. For mod-PCP, ReProCS and GRASTA, we used the approach used in [64]

to estimate the initial background subspace (partial knowledge): do SVD on training

data and keep the left singular vectors corresponding to 95% energy as the matrix P 0.

The averaged normalized mean squared error (NMSE) of the sparse part over 50 Monte

Carlo realizations is shown in Fig. 4.4. As can be seen, in this case, ReProCS performs

the best. In Fig. 4.1, we show the lake with simulated foreground at t = 20, 40, 60, and
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corresponding foreground and background recovered by different algorithms, and we can

see that ReProCS successfully separated foreground and background apart while others

did not.

4.9 Conclusions

In this work, we developed and studied the Automatic ReProCS-cPCA algorithm

for incremental or recursive or dynamic or “online” robust PCA. Our result needed the

following assumptions: accurate initial subspace knowledge and a slow subspace change

change assumption on the `t’s; the basis vectors for its subspaces are dense (non-sparse)

enough; the eigenvalues of the covariance matrix of `t’s are clustered for a certain period

of time (this would happen if data has variations across different scales); the outlier

support sets Tt have some changes over time (as quantified in Model 4 or Model 10); the

square of the smallest outlier magnitude is large enough compared to the energy in the

unstructured small noise plus the energy in the changed subspace; and the algorithm

parameters are appropriately set. Ongoing work includes studying the undersampled

measurements’ case, i.e., the case mt = Atxt + Bt`t + wt. Besides this, we expect the

cluster-PCA algorithm and the proof techniques developed here to apply to various other

problems involving PCA with data and noise terms being correlated.
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Algorithm 4 Automatic ReProCS-cPCA

Parameters: α, K, ξ, ω, ĝ+, Inputs: mt, Output: x̂t, ˆ̀
t, P̂t, t̂̂, r̂̂,new,k, Ĝj,k

Compute λ̂−train as the r0-th eigenvalue of 1
ttrain

∑ttrain

t=1 mtm
′
t and P̂ttrain

as its top r0 eigen-

vectors. Set thresh =
λ̂−train

2
. Set P̂t,∗ ← P̂ttrain

, P̂t,new ← [.], ̂← 0, phase← detect.
For every t > ttrain, do

1. Estimate Tt and xt:

(a) compute Φt ← I − P̂t−1P̂t−1
′ and yt ← Φtmt

(b) solve minx ‖x‖1 s.t. ‖yt −Φtx‖2 ≤ ξ and let x̂t,cs denote its solution

(c) compute T̂t = {i : |(x̂t,cs)i| > ω}
(d) LS: compute x̂t = IT̂t((Φt)T̂t)

†yt

2. Estimate `t: ˆ̀
t ←mt − x̂t

3. Subspace Update:

If t mod α 6= 0 then P̂t,∗ ← P̂t−1,∗, P̂t,new ← P̂t−1,new, P̂t ← [P̂t,∗ P̂t,new]

If t mod α = 0 then
if phase = detect then

(a) Set u = t
α

and compute Du = (I− P̂uα−1,∗P̂uα−1,∗′)[ˆ̀(u−1)α+1, . . . ˆ̀uα]

(b) P̂t,∗ ← P̂t−1,∗, P̂t,new ← P̂t−1,new, P̂t ← [P̂t,∗ P̂t,new]

(c) If λmax( 1
α
DuDu

′) ≥ thresh then

i. phase← pPCA, ̂← ̂+ 1, k ← 0, t̂̂ = t

else if phase = pPCA then

(a) Set u = t
α

and compute Du = (I− P̂uα−1,∗P̂uα−1,∗′)[ˆ̀(u−1)α+1, . . . ˆ̀uα]

(b) P̂t,new ← eigenvectors
(

1
α
DuDu

′, thresh
)
, P̂t,∗ ← P̂t−1,∗, P̂t ← [P̂t,∗ P̂t,new]

(c) k ← k + 1, set r̂j,new,k = rank(P̂t,new)

(d) If k == K, then phase← cPCA, reset k ← 0.

else if phase = cPCA then

(a) cluster PCA (summarized in Algorithm 5);

(b) set P̂t,∗ ← P̂t, P̂t,new ← [.],

(c) phase← detect, reset k ← 0

end-if

eigenvectors(M, thresh) returns a basis matrix for the span of eigenvectors with eigen-
value above thresh. eigenvectors(M, , r) returns a basis matrix for the span of the top
r eigenvectors.
Offline RPCA: at t = t̂j +Kα, for all t ∈ [t̂j−1 +Kα + 1, t̂j +Kα], compute

x̂offline
t ← IT̂t((Φt̂j+Kα

)T̂t)
†Φt̂j+Kα

mt and ˆ̀offline

t ←mt − xt
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Algorithm 5 cluster PCA

1. If k == 0, estimate the clusters

(a) Set u = t
α

and compute Σ̂sample = 1
α

∑uα
t=(u−1)α+1

ˆ̀
t
ˆ̀
t
′. Let λ̂i denote its i-th

largest eigenvalue.

(b) To get the first cluster Ĝj,1, we start with the index of the first (largest)

eigenvalue and keep adding indices of the smaller eigenvalues to it until λ̂1

λ̂i+1
>

ĝ+ but λ̂1

λ̂i
≤ ĝ+ or until λ̂i+1 < 0.25λ̂−train. We set Ĝj,1 = {1, 2, . . . i}.

For Ĝj,2, start with the (i+ 1)-th eigenvalue and repeat the above procedure.
Repeat the above for each new cluster and stop when there are no more
eigenvalues larger than 0.25λ̂−train.

(c) k ← k + 1, P̂t,∗ ← P̂t−1,∗, P̂t,new ← P̂t−1,new, P̂t ← [P̂t,∗ P̂t,new]

2. If 1 ≤ k ≤ ϑ, estimate the k-th cluster’s subspace by cluster PCA

(a) Set u = t
α

, set Ĝj,0 ← [.].

• let Ĝj,det,k := [Ĝj,0, Ĝj,1, . . . Ĝj,k−1] and let Ψk := (I − Ĝj,det,kĜj,det,k
′)

(notice that Ψj,1 = I); compute Mcpca = Ψk

(
1
α

∑uα
t∈(u−1)α+1

ˆ̀
t
ˆ̀
t
′
)

Ψk

• compute Ĝj,k ← eigenvectors(Mcpca, , |Ĝj,k|)
(b) k ← k + 1, P̂t,∗ ← P̂t−1,∗, P̂t,new ← P̂t−1,new, P̂t ← [P̂t,∗ P̂t,new]

3. If k == ϑ, set P̂t ← [Ĝj,1 · · · Ĝj,ϑ].
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CHAPTER 5. CONCLUSION AND FUTURE WORK

In this work, we studied the sparse recovery problem in the presence of different noise

and obtained results for different cases.

In Chapter 2, we obtained performance guarantees for recursive noisy modified-CS

which has been shown in earlier work to be a practically useful algorithm [14, 99, 29].

We show that, under mild assumptions – a lower bound on either the initial nonzero

magnitude or on the magnitude increase rate, or an upper bound on the maximum

number of nonzero entries with magnitude below a certain threshold; mild RIP conditions

(which imply conditions on the required number of measurements); appropriately set

algorithm parameters; and a special start condition – the support and signal recovery

error of modified-CS and its improvement, modified-CS-add-LS-del can be bounded by

time-invariant and small values.

The special start condition is a possible limitation of our analysis. This can be

removed in various ways. If some prior knowledge about signal support is available, that

can be used at t = 0 as suggested and demonstrated in [14]. Or, one can solve a batch

problem (multiple measurement vector (MMV) problem) for the first set of k frames. If

we let N = ∪kt=1Nt, then we have an MMV problem with row support N that can be

solved using mixed norm minimization [100], simultaneous-OMP [101, 102], compressive

MUSIC [103], iterative MUSIC [104], block sparsity approaches [105] or M-SBL (Sparse

Bayesian Learning) [106]. In this case one could adopt guarantees for the chosen batch

method for the initialization. In Chapter 2, we used a deterministic set of assumptions

on signal change. Notice however that one can assume any probabilistic model that
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ensures that aj,t ≥ amin and rj,τ is anything larger than rmin(d0) for for the first d0

frames after a new addition; and at later times, rj,τ can be anything between zero and

infinity. Similarly, any probabilistic model for coefficient decrease that ensures removal

within at most b frames after decrease begins will suffice. We can fix d0 to be any integer

between zero and dmin and our result will then hold for that particular value of d0.

Other ongoing and future work includes designing and analyzing better support pre-

diction techniques rather than just using the previous support estimate as the prediction

for the current support. Some initial ideas are presented in [107].

In Chapter 3, we studied the following problem. Suppose that we have a partial

estimate of the column space of the low rank matrix L. How can we use this informa-

tion to improve the PCP solution? We proposed a simple modification of PCP, called

modified-PCP, that allows us to use this knowledge. We derived its correctness result

that allows us to argue that, when the available subspace knowledge is accurate enough,

modified-PCP requires significantly weaker incoherence assumptions on the low-rank ma-

trix than PCP. We also obtained a useful corollary (Corollary 3.2.1) for the online or

recursive robust PCA problem. Extensive simulation experiments and some experiments

for a real application further illustrate these claims. Ongoing work includes studying the

error stability of modified-PCP for online robust PCA. Future work will include devel-

oping a fast and recursive algorithm for solving modified-PCP and using the resulting

algorithm for various practical applications. Two applications that will be explored are

(a) video layering, e.g. using the BMC dataset of [108], and (b) recommendation system

design in the presence of outliers and missing data. For getting a recursive algorithm,

we will explore the use of ideas similar to those introduced in Feng et al’s recent work

on developing a recursive algorithm that asymptotically approximates the PCP solution

[66].

In Chapter 4, we studied the problem of recursively separate low rank and sparse

component apart in the presence of bounded noise. We develop and study an algorithm
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based on the ReProCS idea introduced and studied in [44, 84, 85]. We call it Automatic

ReProCS with cluster PCA (ReProCS-cPCA). This is a significantly improved ReProCS

algorithm compared to what was studied in previous work. It is able to automatically

detect subspace changes within a short delay; is able to correctly estimate the number of

directions added or deleted; and is also able to correctly estimate the clusters of eigen-

values along the existing directions. The algorithms studied in [44, 84] could not do any

of this. Moreover it is able to accurately estimate both the newly added subspace as well

as the newly deleted subspace. The latter is done by re-estimating the current subspace

using an approach called cluster PCA (cPCA). The basic idea of cPCA was introduced in

[44], but the current work uses that idea to develop an automatic algorithm. The cPCA

step ensures that the estimated subspace dimension does not keep increasing with time.

The algorithms studied in [84, 85] did not do this. Finally, unlike past works, the current

algorithm also returns more accurate offline estimates. We also derive a correctness re-

sult for the proposed algorithm under relatively mild assumptions. (1) First, we obtain

a result for the case where the `t’s can be correlated over time (follow an autoregressive

(AR) model) where as the result of [84, 85] needed mutual independence of the `t’s.

This models mostly static backgrounds in which changes are only due to independent

variations at each time, e.g., light flickers. However, a large class of background image

sequences change due to factors that are correlated over time, e.g., moving waters. This

can be better modeled using an AR model. (2) Second, with one extra assumption –

that the eigenvalues of the covariance matrix of `t are clustered for a period of time after

the previous subspace change has stabilized – we are able to remove another significant

limitation of [84, 85].
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APPENDIX A. PROOF OF THE LEMMAS IN CHAPTER 2

A.0.1 Proof of Lemma 2.2.7

We provide the proof here for the sake of completion and for ease of review. This

will be removed later. In this proof, we use T ,∆,N instead of Tt,∆t,Nt respectively

for simplicity. Let h := x̂modcs − x. We adapt the approach of [12] to bound the

reconstruction error, ‖h‖ := ‖x̂modcs − x‖. A similar result was obtained in [28]. Let ∆1

denote the set of indices of h with the |∆| largest values outside of T ∪∆, let ∆2 denote

the indices of the next |∆| largest values and so on. Then using the same approach as

that of [12], i.e., ‖h∆j
‖ ≤ 1√

∆
‖h∆j−1

‖1,

‖h(T ∪∆∪∆1)c‖≤
∑
j≥2

‖h∆j
‖ ≤ 1√

|∆|
‖h(T ∪∆)c‖1 (A.1)

Since x̂modcs = x + h is the minimizer of (2.2) and since both x and x̂modcs are feasible;

and since x is supported on N ⊆ T ∪∆,

‖x∆‖1 = ‖xT c‖1≥‖(x + h)T c‖1

≥‖x∆‖1 − ‖h∆‖1 + ‖h(T ∪∆)c‖1 (A.2)

Thus,

‖h(T ∪∆)c‖1 ≤ ‖h∆‖1 (A.3)

Combining this with (A.1), and using ‖h∆‖1√
|∆|
≤ ‖h∆‖, we get

‖h(T ∪∆∪∆1)c‖≤
∑
j≥2

‖h∆j
‖ ≤ ‖h∆‖ (A.4)
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Next, since both x and x̂modcs are feasible,

‖Ah‖= ‖A(x− x̂modcs)‖

≤‖y −Ax‖+ ‖y −Ax̂modcs‖ ≤ 2ε (A.5)

In this proof, let

δ, δ|T |+3|∆| (A.6)

Now, we upper bound ‖hT ∪∆∪∆1‖. By δ|T |+2|∆| ≤ δ, we have

(1− δ)‖hT ∪∆∪∆1‖2 ≤ ‖AhT ∪∆∪∆1‖2 (A.7)

To bound the RHS of the above, notice that AhT ∪∆∪∆1 = Ah−∑j≥2 Ah∆j
and so

‖AhT ∪∆∪∆1‖2 = 〈AhT ∪∆∪∆1 ,Ah〉 −
∑
j≥2

〈AhT ∪∆∪∆1 ,Ah∆j
〉

Using (A.5) and the definition of δS given in (2.8) and δ|T |+2|∆| ≤ δ,

|〈AhT ∪∆∪∆1 ,Ah〉| ≤ 2ε
√

1 + δ‖hT ∪∆∪∆1‖ (A.8)

Using the definition of θS1,S2 given in (2.9); equation (A.4); and the fact that ‖hT ‖ +

‖h∆∪∆1‖ ≤
√

2‖hT ∪∆∪∆1‖, we get the following. Using θ|T |,|∆| ≤ δ|T |+|∆| ≤ δ|T |+3|∆|, θ2|∆|,|∆|

≤ δ3|∆| ≤ δ|T |+3|∆| [10],

|
∑
j≥2

〈AhT ∪∆∪∆1 ,Ah∆j
〉|

≤ θ|T |+2|∆|,|∆|‖hT ∪∆∪∆1‖
∑
j≥2

‖h∆j
‖

≤ δ‖hT ∪∆∪∆1‖ ‖h∆‖ (A.9)

Combining the last six equations above, using ‖h∆‖ ≤ ‖hT ∪∆∪∆1‖, we can simplify the

above to get

‖h‖≤2‖hT ∪∆∪∆1‖ ≤
4
√

1 + δ

1− 2δ
ε

≤ 4
√

1 + δ

1− 2δ
ε (A.10)

Clearly, all of the above discussion holds only if the RHS is positive which is true

only if 2δ|T |+3|∆| < 1. Thus, we can get Lemma 2.2.7.
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A.0.2 Proof of Theorem 2.3.2

We prove the first two claims by induction. Using condition 4 of the theorem, the

claim holds for t = 0. This proves the base case. For the induction step, assume that

the claims hold at t − 1, i.e. |∆̃e,t−1| = 0, |T̃t−1| ≤ S, and |∆̃t−1| ≤ Sa, so |Tt| ≤ S. At

t, there are at most Sa new support, so |∆t| ≤ |∆̃t−1| + Sa ≤ 2Sa; there are at most Sa

removed support at time t, so |∆e,t| ≤ |∆̃t−1|+ Sa = Sa. Thus the second claim holds.

Next we bound |∆̃t|, |∆̃e,t|, |T̃t|. Consider the support estimation step. Since condi-

tion 1 of the theorem holds, we can apply Lemma 2.2.7 with STt = S, S∆t = 2Sa. This

gives ‖xt − x̂t,modcs‖ ≤ 7.5ε. Using Proposition 2.3.1, this, along with conditions 2 and

3 implies that all elements of Nt \ Bt will get detected and all zero elements will get

deleted, i.e., there will be no false detections. Thus, |∆̃t| ≤ |Bt| ≤ Sa and |∆̃e,t| = 0 and

so |T̃t| ≤ |Nt|+ |∆̃e,t| ≤ S. Thus the first claim holds.

The third claim follows using the second claim and Lemma 2.2.7.

A.0.3 Proof of Theorem 2.3.3

We prove the first three claims of the theorem by induction. Using condition 4 of

the theorem, the claim holds for t = 0. This proves the base case. For the induction

step, assume that the claim holds at t− 1, i.e. |∆̃e,t−1| = 0, |Tt−1| ≤ S, and |∆̃t−1| ≤ Sa.

Using this, we prove the first three claims holds at t.

The bounding of |Tt|, |∆t|, |∆e,t| is exactly as in the proof of Theorem 2.3.2.

Consider the detection step. There are at most f false detects (from condition 1a)

and thus |∆̃e,add,t| ≤ |∆e,t| + f ≤ Sa + f . Thus |Tadd,t| ≤ |Nt| + |∆̃e,add,t| ≤ S + Sa + f .

So the third claim holds.

Next, consider |∆add,t|. Applying Lemma 2.2.7 with condition 2, i.e., δ|Tt|+3|∆t| ≤

δS+6Sa ≤ 0.207, we have ‖xt− x̂t,modcs‖ ≤ 7.50ε. Thus, all elements of {i : |(xt)i| > αadd +

7.50ε} will definitely get detected at time t and so ∆add,t ⊆ {i : |(xt)i| ≤ αadd + 7.50ε}.

Since condition 3 holds, {i : |(xt)i| ≤ αadd + 7.50ε} ⊆ Bt, and so |∆add,t| ≤ |Bt| ≤ Sa.
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Consider the deletion step. As ∆add,t ⊆ Bt, and |(xt)i| ≤ αadd + 7.50ε for i ∈ ∆add,t,

we have ‖(xt)∆add,t
‖ ≤ √Sa(αadd + 7.50ε). Applying Lemma 2.2.9 with condition 2, i.e.,

δ|Tadd,t|+|∆add,t| = δS+2Sa+f ≤ 0.207, we have ‖(xt−xt,add)Tadd,t
‖ ≤ 1.12ε+0.261

√
Sa(αadd +

7.50ε). Thus, using these facts and condition 1b, all elements of ∆̃e,add,t will get deleted

and elements of {i : |(xt)i| > 2αdel} will not be deleted. Thus |∆̃e,t| = 0, and since

condition 3 holds, ∆̃t ⊆ {i : |(xt)i| ≤ 2αdel} ⊆ Bt, i.e., |∆̃t| ≤ Sa. Thus |T̃t| ≤ |Nt| +

|∆̃e,t| ≤ S. So the first claim holds.

The fourth claim follows using the previous claims and Lemma 2.2.7. The fifth claim

follows using previous claims, Lemma 2.2.9.

A.0.4 Proof of Theorem 2.4.3

We prove the first claim by induction. Using condition 4 of the theorem, the claim

holds for t = 0. This proves the base case. For the induction step, assume that the

claim holds at t− 1, i.e. |∆̃e,t−1| = 0, |T̃t−1| ≤ S, and ∆̃t−1 ⊆ St−1(d0) so that |∆̃t−1| ≤

2(d0 − 1)Sa. Using this we prove that the claim holds at t. In the proof, we use the

following facts often: (a) Rt ⊆ Nt−1 and At ⊆ N c
t−1, (b) Nt = Nt−1 ∪At \ Rt, and (c) if

two sets B,C are disjoint, then, D∪C \B := (D∪C) \B = (D∩Bc)∪C for any set D.

We first bound |Tt|, |∆e,t|, |∆t|. Since Tt = T̃t−1 = N̂t−1, so |Tt| ≤ S. Also, ∆e,t =

N̂t−1 \ Nt = N̂t−1 ∩ [(N c
t−1 ∩ Act) ∪ Rt] ⊆ ∆̃e,t−1 ∪ Rt = Rt. The last equality follows

since |∆̃e,t−1| = 0. Thus |∆e,t| ≤ |Rt| = Sa.

Consider |∆t|. Notice that ∆t = Nt \ N̂t−1 = (Nt−1 ∩ N̂ c
t−1 ∩ Rc

t) ∪ (At ∩ N̂ c
t−1) =

(∆̃t−1 ∩ Rc
t) ∪ (At ∩ N̂ c

t−1) ⊆ (St−1(d0) ∩ Rc
t) ∪ At = St−1(d0) ∪ At \ Rt. Here we used

∆̃t−1 ⊆ St−1(d0). When d0 ≥ 2,Rt ⊆ St−1(d0) and At is disjoint with St−1(d0). Thus

|∆t| ≤ |St−1(d0)|+ |At| − |Rt| = 2(d0 − 1)Sa + Sa − Sa. When d0 = 1,St−1(d0) = ∅, and

At is disjoint with Rt. Thus |∆t| ≤ |At \ Rt| = |At| = Sa. Thus, |∆t| ≤ k1Sa.

Next we bound |∆̃t|, |∆̃e,t|, |T̃t|. Consider the support estimation step. Apply the

first claim of Lemma 2.4.2 with SN = S, S∆e = Sa, S∆ = k1Sa, and b1 = d0r. Since
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conditions 2 and 3 of the theorem hold, all elements of Nt with magnitude equal to or

greater than d0r will get detected. Thus, ∆̃t ⊆ St(d0). Apply the second claim of the

lemma. Since conditions 2 and 1 hold, all zero elements will get deleted and there will

be no false detections, i.e. |∆̃e,t| = 0. Finally, |T̃t| ≤ |Nt|+ |∆̃e,t| ≤ S + 0.

The second claim for time t follows using the first claim for time t − 1 and the

arguments from the paras above. The third claim follows using the second claim and

Lemma 2.2.7.

A.0.5 Proof of Theorem 2.4.8

We prove the first claim of the theorem by induction. Using condition 4 of the

theorem, the claim holds for t = 0. This proves the base case. For the induction step,

assume that the claim holds at t − 1, i.e. |∆̃e,t−1| = 0, |Tt−1| ≤ S, and ∆̃t−1 ⊆ St−1(d0)

so that |∆̃t−1| ≤ 2(d0− 1)Sa. Using this, we prove that the claim holds at t. We will use

the following facts often: (a) Rt ⊆ Nt−1, (b) At ⊆ N c
t−1, (c) Nt = Nt−1 ∪ At \ Rt, and

(d) if two sets B,C are disjoint, then, D ∪C \B := (D ∪C) \B = (D ∩Bc)∪C for any

set D.

The bounding of |Tt|, |∆t|, |∆e,t| is exactly as in the proof of Theorem 2.4.3. Since

Tt = T̃t−1, so |Tt| ≤ S. Also, ∆e,t = N̂t−1 \Nt = N̂t−1∩ [(N c
t−1∩Act)∪Rt] ⊆ ∆̃e,t−1∪Rt =

Rt. Thus |∆e,t| ≤ |Rt| = Sa. Finally, ∆t = Nt \ N̂t−1 = (∆̃t−1 ∩ Rc
t) ∪ (At ∩ N̂ c

t−1) ⊆

(St−1(d0) ∩Rc
t) ∪ At. Thus,

∆t ⊆ St−1(d0) ∪ At \ Rt (A.11)

When d0 ≥ 2,Rt ⊆ St−1(d0) and At is disjoint with St−1(d0), so |∆t| ≤ |St−1(d0)| +

|At| − |Rt| = 2(d0 − 1)Sa + Sa − Sa. When d0 = 1,St−1(d0) = ∅, and At is disjoint with

Rt, so |∆t| ≤ |At \ Rt| = |At| = Sa. Thus, |∆t| ≤ k1Sa.

Consider the detection step. There are at most f false detects (from condition 1a)

and thus |∆̃e,add,t| ≤ |∆e,t|+ f ≤ Sa + f . Thus |Tadd,t| ≤ |Nt|+ |∆̃e,add,t| ≤ S + Sa + f .
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Next, consider |∆add,t|. Notice that

∆t⊆St−1(d0) ∪ At \ Rt

⊆St(d0) ∪ It(d0) \ Dt(d0 − 1). (A.12)

The first ⊆ is from (A.11), the second one follows by using (2.11) for j = d0. Now,

apply Lemma 2.4.6 with SNt = S, S∆e,t = Sa, S∆t = k1Sa, and with b1 = d0r. Using

(A.12), {i ∈ ∆t : |(xt)i| ≥ b1} = ∆t ∩ It(d0). Since conditions 2 and 3 hold, by

Lemma 2.4.6, all elements of {i ∈ ∆t : |(xt)i| ≥ b1} will definitely get detected at

time t. Thus ∆add,t ⊆ ∆t \ {i ∈ ∆t : |(xt)i| ≥ b1} ⊆ ∆t \ It(d0). But from (A.12),

∆t \ It(d0) ⊆ St(d0) \ Dt(d0 − 1). Since when d0 ≥ 2, Dt(d0 − 1) ⊆ St(d0), then

|∆add,t| ≤ |St(d0)|−|Dt(d0−1)| = 2(d0−1)Sa−Sa; when d0 = 1,Dt(d0−1) = St(d0) = ∅,

then |∆add,t| = 0. Thus, |∆add,t| ≤ k2Sa

Consider the deletion step. Apply Lemma 2.4.7 with STadd,t
= S, S∆add,t

= k1Sa.

Since condition 2b holds, δS+Sa+f < 1/2 holds. Since ∆add,t ⊆ St(d0) \ Dt(d0 − 1),

∆add,t contains only 2Sa elements of magnitude {r, 2r, · · · , (d0 − 2)r} and Sa elements

of magnitude (d0 − 1)r. Thus, ‖(xt)∆add,t
‖ ≤ k3

√
Sar. Using these facts and condition

1b, by Lemma 2.4.7, all elements of ∆̃e,add,t will get deleted. Thus |∆̃e,t| = 0. Thus

|T̃t| ≤ |Nt|+ |∆̃e,t| ≤ S.

To bound |∆̃t|, apply Lemma 2.4.7 with STadd,t
= S+Sa+f , S∆add,t

= k2Sa, b1 = d0r.

By Lemma 2.4.7, to ensure that all elements of {i ∈ Tadd,t : |(xt)i| ≥ b1} do not get falsely

deleted, we need δS0+Sa+f < 1/2 and d0r > αdel+
ζL√
Sa

(
√

2ε+2θS0+Sa+f,k2Sak3

√
Sar). From

condition 1b, αdel =
√

2
Sa
ζLε + 2k3θS+Sa+f,k2SaζLr. Thus, we need δS0+Sa+f < 1/2 and

d0r > 2(
√

2
Sa
ζLε + 2k3θS+Sa+f,k2SaζLr). δS0+Sa+f < 1/2 holds since condition 2b holds.

The second one holds since condition 2c and r ≥ G2 of condition 3 hold. Thus, we can

ensure that all elements of {i ∈ Tadd,t : |(xt)i| ≥ b1}, i.e. all elements of Tadd,t with

magnitude greater than or equal to b1 = d0r do not get falsely deleted. But nothing can

be said about the elements smaller than d0r (in the worst case all of them may get falsely
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deleted). Thus, ∆̃t ⊆ St(d0) and so |∆̃t| ≤ 2(d0 − 1)Sa. This finishes the proof of the

first claim. To prove the second and third claims for any t > 0: use the first claim for

t − 1 and the arguments from the paragraphs above to show that the second and third

claim hold for t. The fourth claim follows using the previous claims and Lemma 2.2.7.

The fifth claim follows using previous claims, Lemma 2.2.9 and a bound on ‖(xt)∆̃t
‖2.

It is easy to see that ‖(xt)∆̃t
‖2 ≤ k3

√
Sar.

A.0.6 Proof of Theorem 2.5.5

Recall from the signal model that |Nt| ≤ S for all t, and that |SDt| ≤ (b+1)
2
Sd. Also

Nt = ∪tτ=t−dmin+1Aτ ∪ Lt ∪ SDt, noting that the first two sets might not be disjoint.

The proof follows using induction. The base case is easy. Assume that the result holds

at t−1. At t, at most Sa new elements get added to the support, thus |∆t| ≤ |∆̃t−1|+Sa ≤
(b+1)

2
Sd + d0Sa + Sa. Also, since Tt = T̃t−1, thus |Tt| ≤ S. And ∆e,t = ∆̃e,t−1 ∪ Rt,

indicating |∆e,t| ≤ |∆̃e,t−1| + |Rt| ≤ Sr. The second condition of the theorem ensures

that δ|Tt|+3|∆t| ≤ (
√

2− 1)/2. Thus using Lemma 2.2.7, ||xt − x̂t|| ≤ 7.50ε.

Consider the support detection step. Consider an i /∈ Nt, i.e. (xt)i = 0. Since

α = ζM√
Sa

7.50ε ≥ ζM√
Sa
||xt− x̂t|| ≥ ||xt− x̂t||∞ ≥ |(x̂t)i|, thus i will never get detected into

the support estimate. Thus, |∆̃e,t| = 0. Thus |T̃t| ≤ |Nt|+ |∆̃e,t| ≤ S.

The third condition ensures that any newly added element exceeds α+ ζM√
Sa

7.50ε within

d0 time units and any element of Lt exceeds α+ ζM√
Sa

7.50ε as ` > α+ ζM√
Sa

7.50ε. Consider

any such element j. This means that |(x̂t)j| ≥ |(xt)j|−|(xt−x̂t)j| ≥ |(xt)j|−||xt−x̂t||∞ ≥

|(xt)j|− ζM√
Sa
||xt− x̂t|| ≥ |(xt)j|− ζM√

Sa
7.50ε ≥ α. Thus such an element will definitely get

detected into the support. This means that the only nonzero elements that are missed are

either those that got added in the last d0 frames or those that are currently decreasing.

The maximum number of elements that got added in the last d0 time units is d0Sa. The

maximum number of decreasing elements at t is less than or equal to (b+1)
2
Sd. Thus,

|∆̃t| ≤ (b+1)
2
Sd + d0Sa. This proves the induction step and hence of the theorem.
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A.0.7 Proof of Theorem 2.5.9

Proposition A.0.1 (simple facts). Consider Algorithm 2.

1. An i ∈ Nt will definitely get detected if |(xt)i| > αadd + ζM√
Sa
‖xt − x̂t,modcs‖.

2. An i ∈ Nt will definitely not be deleted if |(xt)i| > αdel + ζL√
Sa
‖xt − x̂t,add‖.

3. All i ∈ ∆e,t (the zero elements of Tt) will definitely get deleted if αdel ≥ ‖x−x̂t,add‖∞.

Recall from the signal model that Nt = ∪tτ=t−dmin+1Aτ ∪ Lt ∪ SDt, noting that the

first two sets might not be disjoint. By the induction assumption, |T̃t−1| ≤ S. Since

Tt = T̃t−1 = N̂t−1, thus,

|Tt| ≤ S (A.13)

Also, by the induction assumption,

∆̃t−1 ⊆ SDt−1 ∪ At−1 . . .At−d0 (A.14)

Recall that Nt = Nt−1 ∪ At \ Rt. Also, SDt−1 ⊆ SDt ∪ Rt. Thus, SDt−1 ∩ Rc
t ⊆ SDt.

Thus,

∆t = Nt ∩ N̂ c
t−1 = (Nt−1 ∩Rc

t ∩ N̂ c
t−1) ∪ (At ∩ N̂ c

t )

⊆ (∆̃t−1 ∩Rc
t) ∪ At

⊆SDt ∪ At−1 · · · ∪ At−d0 ∪ At (A.15)

Thus,

|∆t| ≤
(b+ 1)

2
Sa + d0Sa + Sa (A.16)

Using the above bounds on |Tt| and |∆t| and the RIP condition of the theorem, we

can apply Lemma 2.2.7 to show that

‖xt − x̂t,modcs‖ ≤ 7.50ε (A.17)
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Thus, using the Proposition A.0.1 and condition 3, all elements of At−d0 are definitely

detected in the add step at t, i.e.

At−d0 ⊆ Ât (A.18)

Also since ` satisfies condition 3, all elements of Lt will be detected in the add step at t.

Using (A.18),

∆add,t = ∆t \ Ât =SDt ∪ At ∪ At−1 · · · ∪ At−d0 \ Ât

⊆SDt ∪ At ∪ At−1 · · · ∪ At−d0+1 (A.19)

Thus,

|∆add,t| ≤
(b+ 1)

2
Sa + d0Sa (A.20)

Also, Tadd,t ⊆ Nt ∪∆e,add,t and

∆e,add,t = ∆e,t ∪ (Ât \ Nt) ⊆ ∆̃e,t−1 ∪Rt ∪ (Ât \ Nt) (A.21)

Thus, |∆e,add,t| ≤ Sa + f and so

|Tadd,t| ≤ S + |∆e,add,t| ≤ S + Sa + f (A.22)

By Lemma 2.2.9 and condition 2c of the Theorem, we have

‖(xt − x̂t,add)‖ ≤ 1.12ε+ (1 + 1.261θ|Tadd,t|,|∆add,t|)‖(xt)∆add,t
‖

≤ 1.12ε+ 1.261‖(xt)∆add,t
‖ (A.23)

Recall that, by Proposition A.0.1, any element of x∆add,t
will have magnitude smaller

than αadd + ζM√
Sa

7.50ε. By (A.20), we have

‖x∆add,t
‖≤
√
|∆add,t|(αadd +

ζM√
Sa

7.50ε)

≤
√

(
(b+ 1)

2
Sa + d0Sa)(αadd +

ζM√
Sa

7.50ε) (A.24)
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Let h =
√

( (b+1)
2

+ d0)(αadd + ζM√
Sa

7.50ε). Combining this with the bound on |Tadd,t| and

|∆add,t| we can bound the LS step error by a time-invariant quantity,

‖(xt − x̂t,add)Tadd,t
‖ ≤ 1.12ε+ 1.261h

√
Sa (A.25)

Using Assumption 2.4.5, we have,

‖(xt − x̂t,add)Tadd,t
‖∞ ≤ 1.12

ζL√
Sa
ε+ 0.261ζLh (A.26)

Using the fact that αdel is equal to the RHS of the above equation and proposition fact

3, if (xt)j = 0, then j ∈ R̂t. Thus,

N c
t ⊆ R̂t (A.27)

Next, using (2.18), (A.26), fact 2 of Proposition A.0.1 and the value of αdel, we can

conclude the following: if j ∈ Lt, j will not get falsely deleted; the same is true if

j ∈ Aτ , τ ≤ t− d0. Thus,

R̂t ⊆ N c
t ∪ SDt ∪ At ∪ At−1 · · · ∪ At−d0+1 (A.28)

Recall that N̂t = N̂t−1 ∪ Ât \ R̂t. Thus

∆̃t =Nt \ N̂t = (Nt ∩ N̂ c
t−1 ∩ Âct) ∪ (Nt ∩ R̂t)

⊆ (∆t ∩ Âct) ∪ (SDt ∪ At ∪ At−1 . . .At−d0+1) (A.29)

Since At−d0 ⊂ Ât, using (A.15), we get

∆t ∩ Âct ⊆ SDt ∪ At ∪ At−1 · · · ∪ At−d0+1 (A.30)

Thus, using (A.29),

∆̃t ⊆ SDt ∪ At ∪ At−1 · · · ∪ At−d0+1 (A.31)

Thus,

|∆̃t| ≤
(b+ 1)

2
Sa + d0Sa (A.32)
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Now consider ∆̃e,t.

∆̃e,t = N̂t \ Nt

= (N̂t−1 ∩ R̂c
t ∩N c

t ) ∪ (Ât ∩ R̂c
t ∩N c

t )

As N c
t ⊆ R̂t, we have R̂c

t ⊆ Nt. Thus,

∆̃e,t = ∅ (A.33)

Thus,

|∆̃e,t| = 0 (A.34)

Since |Nt| ≤ S and since |T̃t| ≤ |Nt|+ |∆̃e,t|, thus

|T̃t| ≤ S (A.35)

By condition 2,

θ|T̃t|,|∆̃t| ≤ θS, b+1
2
Sa+d0Sa+Sa

≤ δS+3( b+1
2
Sa+d0Sa+Sa) ≤ 0.207 (A.36)

and

δ|T̃t| ≤ δS ≤ δS+Sa+f ≤ 0.207

Using the same way as getting ‖(xt − x̂t,add)‖, we have

‖(xt − x̂t)‖ ≤ 1.12ε+ 1.261‖x∆̃t
‖

Also, using Proposition A.0.1, any element of x∆̃t
will have magnitude smaller than

αdel + 1.12 ζL√
Sa
ε. By (A.32), we have

‖xt,∆̃t
‖ ≤

√
(
(b+ 1)

2
Sa + d0Sa)(αdel + 1.12

ζL√
Sa
ε)

Thus, the final claim is proved.
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A.0.8 Proof of Remark 2.3.4: necessary and sufficient conditions

Necessity: Consider the noise-free case, i.e. ε = 0 and Algorithm 1. We claim that

δS+Sa,left < 1 at all times t > 0 is necessary to ensure exact recovery of all sparse signal

sequences with support size at most S, and number of support additions and removals

at most Sa. We prove this here. Assume exact recovery at t− 1. Assume also that the

support size at t − 1 is S, there are Sa new additions and Sa new removals at time t.

Thus support size at time t is also S.

Suppose that δS+Sa,left < 1 does not hold. This means there is a set, R, of size S+Sa

for which rank((At)R) < S+Sa. Pick a z so that zR ∈ null((At)R) (i.e. (At)RzR = 0) and

zRc = 0. Partition R into three sets R = D ∪D1 ∪D2 s.t. all are disjoint; |D| = S − Sa,

|D1| = Sa = |D2| and ‖zD2‖1 ≤ ‖zD1‖1. Create two sparse vectors x1 and x2 supported

on D ∪ D1 and D ∪ D2 respectively as follows. Let (x1)D = zD/2, (x1)D1 = zD1 ,

(x1)(D∪D1)c = 0. Let (x2)D = −zD/2, (x2)D2 = −zD2 , (x2)(D∪D2)c = 0. Then both x1 and

x2 have support size S.

Suppose that the signal at time t is x1, i.e. xt = x1 so that yt = Atx
1, and suppose

that the support (equal to support estimate) from t−1 is T = D∪∆e where ∆e is a subset

of (D∪D1∪D2)c of size Sa. Consider the solution of modified-CS with ε = 0. In this case,

both x1 and x2 are feasible since At(x
1−x2) = (At)DzD/2+(At)D1zD1−(At)D(−zD/2)−

(At)D2(−zD2) = (At)RzR. But, ‖(x1)Dc‖ = ‖(x1)D1‖1 = ‖zD1‖1 ≥ ‖zD2‖1 = ‖(x2)Dc‖1.

Thus, clearly x1 will not be the unique solution to modified-CS with ε = 0. This proves

that δS+Sa,left < 1 is necessary.

Sufficiency: Assume exact recovery at t − 1, i.e., Tt = T̃t−1 = Nt−1, ∆t = Nt \ Tt =

Nt \ Nt−1, i.e., |Tt| ≤ S, |∆t| ≤ Sa, thus by Lemma 2.2.7 and δS+3Sa < 0.5, we have

‖xt − x̂t‖ ≤ 0, i.e., x̂t = xt.
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A.0.9 Generative model for Signal Model 2:

This model requires that when a new element j gets added to the support, its mag-

nitude keeps increasing at rate rj,t until it reaches large set, and that an element i of the

large set starts to decrease at rate ri,t until it reaches 0. The sign is selected as +1 or -1

with equal probability when the element gets added to the support, but remains the same

after that. We can choose values for amin, dmin, rmin(dmin), Sa,m, b during simulation.

Mathematically, it can be described as follows. Let (xt)j = (Mt)j(st)j where (Mt)j

denotes the magnitude and (st)j denotes the sign of (xt)j at time t. xt is a m× 1 vector;

S0 = [µ1S], here µ1 is a random number between 0.9 and 1.

For 1 ≤ t ≤ b, let Sa,t = 0, Sr,t = 0, Sd,t = Sa; For any t > b, do the following.

1. Generate

(a) the new addition set, At, of size Sa,t = [µ2(Σt−b
τ=1Sd,τ −Σt−1

τ=1Sa,τ )] (here µ2 is a

random number between 0.9 and 1) uniformly at random from Nt−1
c,

(b) the new decreasing set, Bt, of size Sd,t = [µ3Sa] (here µ3 is a random number

between 0.5 and 1) uniformly at random from Lt−1, and

(c) the new deleted set, Rt, of size Sr,t = [µ4|SDt−1|] (here µ4 is a random number

between 0.1 and 0.3), as the smallest Sr,t elements of SDt−1.

2. Update the coefficients’ magnitudes as follows.

(Mt)i =

(Mt−1)i + ri,t, i ∈ At−dmin
∪ Lt−1 \ Bt, rj,t = µ5;

(Mt−1)i + ri,t, i ∈ ∪tτ=t−dmin+1Aτ , ri,t = µ6rmin(dmin);

(Mt−1)i − ri,t, i ∈ SDt−1 \ Rt, ri,t = µ7
`
b
;

(Mt−1)i − ri,t, i ∈ Bt, ri,t = µ8(Mi,t−1 − `);

0, i ∈ N c
t .
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where µ6, µ7 and µ8 are random numbers between 1 and 1.44; µ5 is a random

number larger than −((Mt−1)i − `).

3. Update the signs as follows.

(st)i =


(st−1)i, i ∈ Nt \ At
iid(±1), i ∈ At
0, i ∈ N c

t

(A.37)

where iid(±1) refers to generating the sign as +1 or -1 with equal probability and

doing this independently for each element i.

4. Set (xt)i = (Mt)i(st)i for all i.

5. Update

Lt =At−dmin
∪ Lt−1 \ Bt,

SDt =SDt−1 ∪ Bt \ Rt.
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APPENDIX B. PROOF OF THE LEMMAS IN CHAPTER 3

B.0.10 Derivation for (1.5)

Recall from Sec 1.1.2 that rnew = rank(Lnew),

Lnew = (I−GG∗)L
SVD
= UnewΣnewV∗new (B.1)

Let U0 be a basis matrix for range(L) ∩ range(G) = range(U) ∩ range(G) with r0 =

rank(U0) Thus, there exist rotation matrices R1,RG and basis matrices U1,Gextra such

that

UR1 = [U0 U1] and GRG = [U0 Gextra] (B.2)

with Gextra
∗U1 = 0.

Clearly, rank(U1) = rnew
1. Split the r× r matrix R1 as R1 = [(R1)0, (R1)1] so that

(R1)0 contains the first r0 columns and (R1)1 contains the last rnew columns. Thus,

Lnew = (I−U0U
∗
0)[U0 U1]R∗1ΣV∗ = U1(R1)∗1ΣV∗.

Let ((R1)∗1ΣV∗)
SVD
= U2Σ2V

∗
2 denote its full SVD. Thus Lnew = U1U2Σ2V

∗
2. Comparing

with the SVD of Lnew we get that Unew = U1U2 where U2 is a rnew×rnew unitary matrix;

Σnew = Σ2 and Vnew = V2. Thus,

UR1 = [U0 UnewU∗2] = [U0 Unew]

(
I 0

0 U∗2

)
(B.3)

1This follows because (I − GG∗)L = (I − U0U
∗
0)[U0 U1]R−11 ΣV∗ = [0 U1]R∗1ΣV∗. Since

rank([0 U1]) = rank(U1) and all other matrices are full rank r, we get that rank(U1) = rank(Lnew) =
rnew. Here we have used Sylvester’s inequality on Lnew = [0 U1](R∗1ΣV∗) to get that rank(U1)+r−r ≤
rank(Lnew) = rnew ≤ min(rank(U1), r) = rank(U1).
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By taking RU = R1

(
I 0
0 U∗2

)−1

= R1

(
I 0
0 U2

)
, we get

URU = [U0 Unew] and GRG = [U0 Gextra] (B.4)

Rearranging, we get (1.5).

B.0.11 Proof of Lemma 3.3.1

First we state and prove the following fact2.

Proposition B.0.2. Assume m1 < m2 < n1n2, we have

PUnif(m1)(Success) ≥ PUnif(m2)(Success).

There are a total of
(
n1n2

m2

)
size-m2 subsets of the set of indices of an n1 × n2 matrix.

The probability of any one of them getting selected is 1/
(
n1n2

m2

)
under the Unif(m2) model.

Suppose that the algorithm succeeds for k out of these
(
n1n2

m2

)
sets. Call these the “good”

sets. Then,

PUnif(m2)(Success) =
k(

n1n2

m2

) .
By Theorem 2.2 of [32], the algorithm definitely also succeeds for all size-m1 subsets

of these k “good” size-m2 sets. Let k1 be the number of such size m1 subsets. Under

the Unif(m1) model, the probability of any one such set getting selected is 1

(n1n2
m1

)
. Thus

PUnif(m1)(Success) = k1

(n1n2
m1

)
.

Now we need to lower bound k1. There are a total of
(
n1n2

m2

)
size-m2 sets and each of

them has
(
m2

m1

)
subsets of size m1. However, the total number of distinct size-m1 sets is

only
(
n1n2

m1

)
. Because of symmetry, this means that in the collection of all size-m1 subsets

of all size-m2 sets, a given set is repeated b =
(n1n2
m2

)(m2
m1)

(n1n2
m1

)
times.

In the sub-collection of size-m1 subsets of the k “good” size-m2 sets, the number

of times a set is repeated is less than or equal to b. Also, the number of entries in

2This fact may seem intuitively obvious, however we cannot find a simpler proof for it than the one
we give.
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this collection (including repeated ones) is k
(
m2

m1

)
. Thus, the number of distinct size-m1

subsets of the “good” sets is lower bounded by
k(m2
m1

)
b

, i.e. k1 ≥
k(m2
m1

)
b
. Thus,

PUnif(m1)(Success) ≥
k
(
m2

m1

)(
n1n2

m1

)(
n1n2

m1

)(
m2

m1

)(
n1n2

m2

) = PUnif(m2)(Success).

Proof of Lemma 3.3.1. Denote by Ω0 the support set. We have

PBer(ρ0)(Success)

=

n1n2∑
k=0

PBer(ρ0)(Success | |Ω0| = k)PBer(ρ0)(|Ω0| = k)

≤
m0−1∑
k=0

PBer(ρ0)(|Ω0| = k)+

n1n2∑
k=m0

PUnif(k)(Success)PBer(ρ0)(|Ω0| = k)

≤PBer(ρ0)(|Ω0| < m0) + PUnif(m0)(Success),

where we have used the fact that for k ≥ m0, PUnif(k)(Success) ≤ PUnif(m0)(Success) by

Proposition B.0.2, and that the conditional distribution of Ω0 given its cardinality is

uniform. Thus,

PUnif(m0)(Success) ≥ PBer(ρ0)(Success)− PBer(ρ0)(|Ω0| < m0).

Let random matrix Xn1×n2 be a matrix whose each entry is i.i.d. Bernoulli distributed as

P(Xij = 1) = ρ0,P(Xij = 0) = 1−ρ0. Then, under the Bernoulli model, |Ω0| =
∑

i,j Xij,

E[
∑

i,j Xij] = E[|Ω0|] = ρ0n1n2, and 0 ≤ Xij ≤ 1. Thus by the Hoeffding inequality, we

have

P(E[
∑
i,j

Xij]−
∑
i,j

Xij ≥ t) ≤ exp(− 2t2

n1n2

).

As ρ0 = m0

n1n2
+ ε0, take t = ε0n1n2, we have

PBer(ρ0)(|Ω0| ≤ m0) = P(
∑
i,j

Xij ≤ m0) ≤ exp(−2ε20n1n2).

Thus PUnif(m0)(Success) ≥ PBer(ρ0)(Success)− exp(−2ε20n1n2).



www.manaraa.com

188

B.0.12 Proof of Lemma 3.3.2

Proof. First, we state the theorem used in this proof.

Lemma B.0.3. [67, Theorem 2(10a)] For n× n matrix A with entries aij, let aij, i ≥ j

be independent (not necessarily identically distributed) random variables bounded with a

common bound K. Assume that for i ≥ j, the aij have a common expectation µ = 0 and

variance σ2. Define aij for i < j by aij = aji. (The numbers K,µ, σ2 will be kept fixed as

the matrix dimension n will tend to infinity.) For k satisfying K2k6/(4σ2n) < 1/2, we

have

P(max
i

(|λi(A)|) > 2σ
√
n+ v) <

√
n exp(− kv

2σ
√
n+ v

).

Note that in this theorem, variance is fixed to σ2, but we have checked that the

theorem holds for variance bounded by σ2, and actually [109, Theorem 4], [110, Theorem

1.4] used or stated similar results.

Let

A :=

 0 E

E∗ 0

 (B.5)

Notice that A is an (n1 + n2)× (n1 + n2) symmetric matrix that satisfies requirements

of Lemma B.0.3. By Lemma B.0.3 with K = 1, µ = 0, σ =
√
ρs and setting v =

(0.3536− 2
√
ρs)
√
n1 + n2, and k = ρ

1/3
s (n1 + n2)1/6, we have

P (max
i
|λi(A)| > 0.3536

√
n1 + n2)

≤√n1 + n2 exp(−ρ
1/3
s (n1 + n2)1/6 · (0.3536− 2

√
ρs)
√
n1 + n2

0.3536
√
n1 + n2

)

≤(n1 + n2)−10 < n−10
(1)

In the above, v > 0 because ρs < 0.03 and the second inequality holds because (n1+n2)1/6

log(n1+n2)
>

10.5

ρ
1/3
s (1−5.6561

√
ρs)
. Clearly,

‖A‖ =
√
‖AA∗‖ =

√√√√√√
∥∥∥∥∥∥∥
EE∗ 0

0 E∗E


∥∥∥∥∥∥∥ =

√
‖EE∗‖ = ‖E‖ (B.6)
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Therefore, we have P (‖E‖ > 0.5
√
n(1)) < n−10

(1) .

B.0.13 Implications of Assumption 3.1.2

We summarize here some important implications of Assumption 3.1.2.

Remark B.0.4. By Assumption 3.1.2(a)(b)(c), we have

ρs≤ 1− 1.5 max
{

60ρ
1/2
r , 11C01ρ

1/2
r , 0.11

}
≤ 1− 1.5 max

{
60ρ

1/2
r , 11C01ρ

1/2
r ,

11 log2 n(1)

n(2)

}
<

1−
1.5 max{60ρ

1/2
r ,11C01ρ

1/2
r ,

11 log2 n(1)
n(2)

}
1.5 logn(1)

1.5 logn(1)

<

1−
max{60ρ

1/2
r ,11C01ρ

1/2
r ,

11 log2 n(1)
n(2)

}
logn(1)

1.3dlogn(1)e

(B.7)

The third inequality holds because 0 < 1.5 max
{

60ρ
1/2
r , 0.11

}
≤ 1.5 max {60/102, 0.11} <

1; and for fixed constant b > 1, (1−x/b)b > 1−x whenever x < 1. The fourth inequality

holds since 1.5 log n(1) > 1.3dlog n(1)e for n(1) ≥ 1024.

Remark B.0.5. By Assumption 3.1.2(b)(c), we have

ρs ≤ 0.0156 ≤ 1− 250C01ρr
logn(1)

. (B.8)

This follows since n(1) ≥ exp(253.9618C01ρr) gives 250C01ρr
logn(1)

≤ 0.9844, and so 1−250C01ρr
logn(1)

≥

0.0156.

B.0.14 Proof of Lemma 3.3.8

The proof uses the following three lemmas.

Lemma B.0.6. [63, Theorem 4.1][32, Theorem 2.6] Suppose Ω0 ∼ Ber(ρ0). Then there

is a numerical constant C01 such that for all β > 1,

‖PΠ − ρ−1
0 PΠPΩ0PΠ‖ ≤ ε0, (B.9)

with probability at least 1− 3n−β(1) provided that ρ0 ≥ C01 ε
−2
0

βρr
logn(1)

.
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Lemma B.0.7. [32, Lemma 3.1] Suppose Z ∈ Π is a fixed matrix, and Ω0 ∼ Ber(ρ0).

Then

‖Z − ρ−1
0 PΠPΩ0Z‖∞ ≤ ε0‖Z‖∞ (B.10)

with probability at least 1− 2n−11
(1) , provided that ρ0 ≥ 60 ε−2

0
ρr

logn(1)
.

This is the same as Lemma 3.1 in [32] except that we derive an explicit expression

for the lower bound on ρ0. A proof for this can be found in the Appendix of [69].

Lemma B.0.8. [63, Theorem 6.3][32, Lemma 3.2] Suppose Z is fixed, and Ω0 ∼ Ber(ρ0).

Then there is a constant C03 > 0 s.t.

‖(I− ρ−1
0 PΩ0)Z‖ ≤ C03

√
11n(1) log n(1)

ρ0

‖Z‖∞ (B.11)

with probability at least 1− n−11
(1) , provided that ρ0 ≥ 11 logn(1)

n(2)
.

In the following proof, we take

ε = (ρr)
1/4 and q = 1− ρ

1
1.3dlogn(1)e
s (B.12)

Notice from our assumption on ρr given in Assumption 3.1.2 that

ε ≤ (10−4)1/4 ≤ e−1.

Let Zj = UnewV∗new − PΠYj. Clearly, Zj ∈ Π. Notice that Yj ∈ Ω⊥,

Yj = Yj−1 + q−1PΩ̄jZj−1, and

Zj = (PΠ − q−1PΠPΩ̄jPΠ)Zj−1.

Clearly, Ω̄j and Zj−1 are independent. Using (B.7) and (B.12), q ≥ 60
√
ρr

logn(1)
. Thus, by

Lemma B.0.7

‖Zj‖∞ ≤ εj‖UnewV∗new‖∞, (B.13)

w.p. at least 1−2jn−11
(1) . By Lemma B.0.6 and (B.7), with probability at least 1−3jn−11

(1) ,

‖Zj‖F ≤ ε‖Zj−1‖F ≤ εj‖UnewV∗new‖F = εj
√
r. (B.14)

Proof of (a)
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Proof. As

Yj0 =

j0∑
j=1

q−1PΩ̄jZj−1, (B.15)

and PΠ⊥Zj = 0, so we have, with probability at least 1− 3j0n
−11
(1) ,

‖WL‖ =‖PΠ⊥Yj0‖ ≤
j0∑
j=1

‖q−1PΠ⊥PΩ̄jZj−1‖

=

j0∑
j=1

‖PΠ⊥(q−1PΩ̄jZj−1 −Zj−1)‖

≤
j0∑
j=1

‖q−1PΩ̄jZj−1 −Zj−1‖

≤C03

√
11n(1) log n(1)

q

j0∑
j=1

‖Zj−1‖∞

(using Lemma B.0.8 and q ≥ 11 log n(1)

n(2)

by (B.7))

≤C03

√
11n(1) log n(1)

q

j0∑
j=1

εj−1‖UnewV∗new‖∞

(using Lemma B.0.7 and q ≥ 60ρ
1/2
r

log n(1)

by (B.7))

<C03(1− ε)−1

√
11n(1) log n(1)

q
‖UnewV∗new‖∞

≤C03(1− ε)−1

√
11ρr

q log n(1)

(using ‖UnewV∗new‖∞ ≤
√

ρr

n(1) log2 n(1)

by (3.3))

≤
√

11C03ρ
1/4
r√

60(1− e−1)

(using q ≥ 60
√
ρr

log n(1)

by (B.7) and ε ≤ e−1)

≤ 1

16

(using ρr ≤ 7.2483× 10−5C−4
03 by Assu. 3.1.2(a))

The fourth step holds with probability at least 1 − j0n
−11
(1) by applying Lemma B.0.8 j0
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times; the fifth holds with probability at least 1− 2j0n
−11
(1) by applying Lemma B.0.7 j0

times for each Zj (similar to (B.13)). Since j0 = 1.3 log n(1) < n(1) (for n(1) satisfying

Assumption 3.1.2), the result follows.

Proof of (b)

Proof. Since PΩYj0 = 0, we have

PΩ(UnewV∗new + PΠ⊥Yj0) = PΩ(UnewV∗new − PΠYj0) = PΩ(Zj0),

and by (B.14), (B.12) and (B.7) (q ≥ 11C01
√
ρr

logn(1)
), we have

‖PΩ(Zj0)‖F ≤ ‖Zj0‖F ≤ εj0
√
r ≤ e−1.3 logn(1)

√
r =

√
r

n1.3
(1)

, (B.16)

with probability at least 1 − 3j0n
−11
(1) . Thus, when

√
r

n0.8
(1)

< 1
4
, e.g. n(1) ≥ 102, Lemma

3.3.8(b) holds with probability at least 1− 3n−10
(1) .

Proof of (c)

Proof. Recall that UnewV∗new + WL = Zj0 + Yj0 , PΩ⊥Yj0 = Yj0 . From above,

‖Zj0‖∞ ≤ ‖Zj0‖F ≤
√
r

n1.3
(1)

<
λ

8
(B.17)

by (B.16) with probability at least (1 − 3n−10
(1) ) when

√
r

n0.8
(1)

< 1
8
, e.g. n(1) ≥ 1024. Thus,

we only need to show ‖Yj0‖∞ ≤ 11λ
40

. We have, with probability at least 1− 2j0n
−11
(1) ,

‖Yj0‖∞≤ q−1
∑j0

j=1 ‖PΩ̄jZj−1‖∞
≤ q−1

∑j0
j=1 ‖Zj−1‖∞

≤ q−1
∑j0

j=1 ε
j−1‖UnewV∗new‖∞

(using Lemma B.0.7 and q ≥ 60ρ
1/2
r

logn(1)
by (B.7))

≤ q−1
∑j0

j=1 ε
j−1
√

ρr
n(1) log2 n(1)

(using ‖UnewV∗new‖∞ ≤
√

ρr
n(1) log2 n(1)

by (3.3))

≤ λ
60(1−e−1)

< 11λ
40

(using q ≥ 60
√
ρr

logn(1)
by (B.7) and ε ≤ e−1 by (B.12))

(B.18)
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The third step follows from Lemma B.0.7 with probability at least 1 − 2j0n
−11
(1) . Thus,

Lemma 3.3.8(c) holds with probability at least 1− 2n−10
(1) .

To sum up, with the assumptions in Lemma 3.3.8, we have (a), (b), (c) of Lemma

3.3.8 hold with probability at least 1− 11n−10
(1) .

B.0.15 Proof of Lemma 3.3.9

The proof uses the following lemma.

Lemma B.0.9. [32, Corollary 2.7] Assume that Ω0 ∼ Ber(ρ0), L satisfies (3.1), (3.2)

and (3.3), then there is a numerical constant C01 such that for all β > 1,

‖PΩ0PΠ‖2 ≤ ρ0 + ε0,

with probability at least 1− 3n−β(1) provided that 1− ρ0 ≥ C01 ε
−2
0

βρr
logn(1)

.

This is a direct corollary of Lemma B.0.6 stated earlier. It follows by replacing Ω by

Ωc
0 in Lemma B.0.6.

Proof of (a)

Let E := sgn(S). Recall from the assumption in this lemma that E satisfies the

assumptions of Lemma 3.3.2.

By taking Ω0 = Ω, ρ0 = ρs, ε0 = 0.2, and β = 10 in Lemma B.0.9, and using (B.8),

we get

‖PΩPΠ‖2 ≤ σ := ρs + 0.2, (B.19)

with probability at least 1− 3n−10
(1) . Thus, using the bound on ρs from (B.8), we get that

‖PΩPΠ‖2 ≤ 0.22 < 1/4.

Proof of (b)
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Proof. Note that

WS = PΠ⊥λE + PΠ⊥λ
∑
k≥1

(PΩPΠPΩ)kE

:= PΠ⊥WS
0 + PΠ⊥WS

1 .

By Assumption 3.1.2(b)(e) and Lemma 3.3.2, we have

‖E‖ ≤ 0.5
√
n(1)

with probability at least 1− n−10
(1) . Since λ = 1/

√
n(1), we have

‖PΠ⊥WS
0 ‖ ≤ ‖WS

0 ‖ = λ‖E‖ ≤ 0.5,

with probability at least 1− n−10
(1) .

Let R =
∑

k≥1(PΩPΠPΩ)k. Let N1, N2 denote 1/2-nets for Sn1−1,Sn2−1 where Sn1−1

is a unit Euclidean sphere in Rn1 .A subset N of Rn1 is referred to as a ξ-net, if and

only if, for every y ∈ Rn1 , there is a y1 ∈ N for which ‖y − y1‖ ≤ ξ (here we used the

Euclidean distance metric) [68].

By [68, Lemma 5.2], the cardinality of the 1/2-nets N1 and N2 is 5n1 and 5n2 respec-

tively.

By [68, Lemma 5.4],

‖R(E)‖= sup
x∈Sn2−1,y∈Sn1−1

〈y,R(E)x〉

≤4 sup
x∈N2,y∈N1

〈y,R(E)x〉. (B.20)

For a fixed pair (y, x) of unit-normed vectors in N1 ×N2, define the random variable

X(x, y) := 〈y,R(E)x〉 = 〈R(yx∗),E〉.

Conditional on Ω = supp(E), the signs of E are i.i.d. symmetric and Hoeffding’s inequal-

ity gives

P(|X(x, y)| > t |Ω) ≤ 2 exp
(
− 2t2

‖R(yx∗)‖2
F

)
.
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Now since ‖yx∗‖F = 1, the matrix R(yx∗) obeys ‖R(yx∗)‖F ≤ ‖R‖ and, therefore,

P
(

sup
x∈N2,y∈N1

|X(x, y)| > t |Ω
)
≤ 2|N1||N2| exp

(
− 2t2

‖R‖2

)
.

On the event {‖PΩPΠ‖ ≤ σ},

‖R‖ ≤
∑
k≥1

σ2k =
σ2

1− σ2

and, therefore, letting γ = 1−σ2

2σ2 , we have,

P(λ‖R(E)‖ > 27
80

)

≤P(λ‖R(E)‖ > 27
80
, ‖PΩPΠ‖ ≤ σ) + P(‖PΩPΠ‖ > σ)

≤P
(

supx∈N2,y∈N1
4|X(x, y)| > 27

√
n(1)

80
| ‖PΩPΠ‖ ≤ σ

)
+

P(‖PΩPΠ‖ > σ)

≤2|N1||N2| exp
(
−272n(1)γ

2

12800

)
+ P(‖PΩPΠ‖ > σ)

≤2× 52n(1) exp
(
−272n(1)γ

2

12800

)
+ 3n−10

(1)

≤2 exp
(
−n(1)(0.0570γ2 − log 25)

)
+ 3n−10

(1)

(as σ = ρs + 0.2 ≤ 0.2156,⇒ 0.0570γ2 − log 25 ≥ 2.7773)

≤5n−10
(1) (when 2.7773n(1) ≥ 10 log n(1), e.g., n(1) ≥ 10.)

Thus

‖WS‖ ≤ 67/80,

with probability at least 1− 5n−10
(1) .

Proof of (c)

Proof. Observe that

PΩ⊥WS = λPΩ⊥(I− PΠ)(PΩ − PΩPΠPΩ)−1E

= −λPΩ⊥PΠ(PΩ − PΩPΠPΩ)−1E

Let WS
3 := PΩ⊥WS. Clearly, for (i, j) ∈ Ω, (WS

3 )i,j = 0 and for (i, j) ∈ Ωc, (WS
3 )i,j =

(−λPΠ(PΩ − PΩPΠPΩ)−1E)i,j.
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For (i, j) ∈ Ωc, it can be rewritten as

(WS
3 )ij = 〈ei,WS

3 ej〉 = 〈eie∗j ,WS
3 〉

= 〈eie∗j ,−λPΠPΩ(PΩ − PΩPΠPΩ)−1E〉

= λ〈X(i, j),E〉

where X(i, j) := −(PΩ−PΩPΠPΩ)−1PΩPΠ(eie
∗
j). Conditional on Ω = supp(E), the signs

of E are i.i.d. symmetric, and Hoeffding’s inequality gives

P(|(WS
3 )ij| > tλ |Ω) ≤ 2 exp

(
− 2t2

‖X(i, j)‖2
F

)
,

and, thus,

P
(

sup
i,j∈Ωc

|(WS
3 )ij| > tλ |Ω

)
≤ 2n1n2 exp

(
− 2t2

supi,j ‖X(i, j)‖2
F

)
.

Since (3.11) holds, on the event {‖PΩPΠ‖ ≤ σ}, we have

‖PΩPΠ(eie
∗
j)‖F ≤ ‖PΩPΠ‖‖PΠ(eie

∗
j)‖F ≤ σ

√
2ρr/ log2 n(1)

On the same event, ‖(PΩ − PΩPΠPΩ)−1‖ ≤ (1− σ2)−1 and, therefore,

‖X(i, j)‖2
F ≤

2σ2

(1− σ2)2

ρr

log2 n(1)

.

Then unconditionally, letting γ = (1−σ2)2

2σ2 , we have

P
(
‖PΩ⊥WS‖∞ > λ

2

)
= P

(
‖WS

3 ‖∞ > λ
2

)
≤ 2n(1)n(2) exp

(
− log2 n(1)γ

2

4ρr

)
+ P(‖PΩPΠ‖ ≥ σ)

≤ 2n
−

logn(1)γ
2

4ρr
+2

(1) + 3n−10
(1)

≤ 5n−10
(1)

The last bound follows since σ = ρs + 0.2 ≤ 0.2156 by (B.8) and so γ ≥ 9.7798; and

n(1) ≥ exp(0.5019ρr) by Assumption 3.1.2(c).

To sum up, with the assumption in Lemma 3.3.9, we have (a), (b) in Lemma 3.3.9

hold with probability at least 1− 10n−10
(1) .
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APPENDIX C. PROOF OF THE LEMMAS IN CHAPTER 4

C.1 Preliminaries

Lemma C.1.1. [44, Lemma 2.10] Suppose that P, P̂ and Q are three basis matrices.

Also, P and P̂ are of the same size, Q′P = 0 and ‖(I− P̂P̂′)P‖2 = ζ∗. Then,

1. ‖(I− P̂P̂′)PP′‖2 = ‖(I−PP′)P̂P̂′‖2 = ‖(I−PP′)P̂‖2 = ‖(I− P̂P̂′)P‖2 = ζ∗

2. ‖PP′ − P̂P̂′‖2 ≤ 2‖(I− P̂P̂′)P‖2 = 2ζ∗

3. ‖P̂′Q‖2 ≤ ζ∗

4.
√

1− ζ2
∗ ≤ σi

(
(I− P̂P̂′)Q

)
≤ 1

Weyl’s inequality [?] (simplified version) states the following

Theorem C.1.2. Given two Hermitian matrices A and H,

λi(A)− ‖H‖2 ≤ λi(A + H) ≤ λi(A) + ‖H‖2

Davis and Kahan’s sin θ theorem [95] studies the rotation of eigenvectors by pertur-

bation.

Theorem C.1.3 (sin θ theorem [95]). Given two Hermitian matrices A and H and

suppose that A satisfies

A =

[
EE⊥

]A 0

0 A⊥


 E′

E⊥
′


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where [E E⊥] is an orthonormal matrix. Suppose that A + H can be decomposed as

A + H =

[
FF⊥

]Λ 0

0 Λ⊥


 F′

F⊥
′


where [F F⊥] is another orthonormal matrix and is such that rank(F) = rank(E). Let

R := (A + H)E− AE = HE. If λmin(A) > λmax(Λ⊥), then

‖(I− FF′)E‖2 ≤
‖R‖2

λmin(A)− λmax(Λ⊥)
≤ ‖H‖2

λmin(A)− λmax(Λ⊥)
.

Remark C.1.4. In the above theorem, let r = rank(F). If the decomposition of A + H

is obtained by EVD, then λmax(Λ⊥) = λr+1(A + H) ≤ λr+1(A) + ‖H‖2. The inequality

follows using Weyl. Moreover, if λmin(A) > λmax(A⊥), then λr+1(A) = λmax(A⊥). Thus

a useful corollary of the above result is the following. If λmin(A)−λmax(A⊥)−‖H‖2 > 0,

then

‖(I− FF′)E‖2 ≤
‖H‖2

λmin(A)− λmax(A⊥)− ‖H‖2

.

Lemma C.1.5 (Cauchy-Schwarz for a sum of vectors). For vectors xt and yt,(
α∑
t=1

xt
′yt

)2

≤
(∑

t

‖xt‖2
2

)(∑
t

‖yt‖2
2

)

Lemma C.1.6 (Cauchy-Schwarz for a sum of matrices). For matrices Xt and Yt,∥∥∥∥∥ 1

α

α∑
t=1

XtYt
′

∥∥∥∥∥
2

2

≤ λmax

(
1

α

α∑
t=1

XtXt
′
)
λmax

(
1

α

α∑
t=1

YtYt
′
)
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Proof of Lemma C.1.6.∥∥∥∥∥
α∑
t=1

XtYt
′

∥∥∥∥∥
2

2

= max
‖x‖=1
‖y‖=1

∣∣∣∣∣x′
(∑

t

XtYt
′
)

y

∣∣∣∣∣
2

= max
‖x‖=1
‖y‖=1

∣∣∣∣∣
α∑
t=1

(Xt
′x)′(Yt

′y)

∣∣∣∣∣
2

≤ max
‖x‖=1
‖y‖=1

(
α∑
t=1

‖Xt
′x‖2

2

)(
α∑
t=1

‖Yt
′y‖2

2

)

= max
‖x‖=1

x′
α∑
t=1

XtXt
′ x · max

‖y‖=1
y′

α∑
t=1

YtYt
′ y

= λmax

(
α∑
t=1

XtXt
′
)
λmax

(
α∑
t=1

YtYt
′
)

The inequality is by Lemma C.1.5. The penultimate line is because ‖x‖2
2 = x′x. Multi-

plying both sides by
(

1
α

)2
gives the desired result.

Lemma C.1.7 (Exchanging the order of a double sum).

α−1∑
t=0

t∑
τ=0

ft,τ =
α−1∑
τ=0

α−1∑
t=τ

ft,τ

Proof. Define [statement] to be the Boolean value of statement

α−1∑
t=0

t∑
τ=0

ft,τ =
∑
t,τ

[0 ≤ τ ≤ t][0 ≤ t ≤ α− 1]ft,τ

=
∑
t,τ

[0 ≤ τ ≤ t ≤ α− 1]ft,τ

=
∑
t,τ

[0 ≤ τ ≤ α− 1][τ ≤ t ≤ α− 1]ft,τ

=
α−1∑
τ=0

α−1∑
t=τ

ft,τ

The following lemma follows in an exactly analogous fashion.
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Lemma C.1.8 (Exchanging the order of a double sum).

t0+α−1∑
t=t0

t∑
τ=t0

ft,τ =

t0+α−1∑
τ=t0

t0+α−1∑
t=τ

ft,τ

Lemma C.1.9 (A summation used very often). We have

1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2(t−τ) =
1

1− b2
(1− 1

α

b2(1− b2α)

1− b2
)

Thus

1

1− b2
(1− 1

α

b2

1− b2
) ≤ 1

α

t0+α−1∑
t=t0

t∑
τ=t0

b2(t−τ) ≤ 1

1− b2

Proof:
∑t

τ=t0
b2(t−τ) = 1

1−b2 (1−b2(t−t0+1)). And
∑t0+α−1

t=t0
1

1−b2 (1−b2(t−t0+1)) = 1
1−b2 (α−

b2(1−b2α)
1−b2 )

Lemma C.1.10. Let X, Y , and Z be random variables. Assume that X is independent

of {Y, Z}. Then

E[XY |Z] = E[X]E[Y |Z]

Proof. By the chain rule, fX,Y |Z(x, y|z) = fX|Y,Z(x|y, z)fY |Z(y|z). Because X is indepen-

dent of both Y and Z, fX|Y,Z(x|y, z) = fX(x).

Lemma C.1.11. For an event E and random variable X, P(E|X) ≥ p for all X ∈ C

implies that P(E|X ∈ C) ≥ p.

Theorem C.1.12 (Matrix Azuma). [96, Theorem 7.1] Consider a finite adapted se-

quence Zt, t = 1, 2, . . . α, of n × n Hermitian matrices, and a fixed sequence At of

Hermitian matrices that satisfy

E[Zt|Z1,Z2, . . . ,Zt−1] = 0 and Zt
2 � At

2 with probability 1.

Define the variance parameter

σ2 :=
∥∥∥∑

t

At
2
∥∥∥

2
.

Then, for all ε > 0,

Pr

(
λmax

(∑
t

Zt

)
≥ ε

)
≤ n exp

(−ε2
8σ2

)
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The following corollary extends the above result to the case where the conditional

expectation is not zero and when we also condition on another random variable.

Corollary C.1.13 (Matrix Azuma conditioned on another random variable for a nonzero

mean Hermitian matrix). Consider an α-length sequence {Zt}t=1,2,...,α of random Her-

mitian matrices of size n × n and a random variable X that we condition on. As-

sume that, for all X ∈ C, (i) Pr(b1I � Zt � b2I|X) = 1, for 1 ≤ t ≤ α and (ii)

b3I � 1
α

∑α
t=1 E[Zt|Z1,Z2, . . . ,Zt−1, X] � b4I. Then for all ε > 0,

Pr

(
λmax

(
1

α

α∑
t=1

Zt

)
≤ b4 + ε

∣∣∣X) ≥ 1− n exp

( −αε2
8(b2 − b1)2

)

Pr

(
λmin

(
1

α

α∑
t=1

Zt

)
≥ b3 − ε

∣∣∣X) ≥ 1− n exp

( −αε2
8(b2 − b1)2

)
Proof. At certain places, where the meaning is clear, we use Et−1[Zt|X] to refer to

E[Zt|Z1,Z2, . . . ,Zt−1, X]

1. Let Yt := Zt − Et−1(Zt|X). Clearly Et−1(Yt|X) = 0. Since for all X ∈ C,

Pr(b1I � Zt � b2I|X) = 1 and since for an Hermitian matrix, λmax(.) is a convex

function, and λmin(.) is a concave function, b1I � Et−1(Zt|X) � b2I for all X ∈ C.

Therefore, Pr(Yt
2 � (b2 − b1)2I|X) = 1 for all X ∈ C. Thus, for Theorem C.1.12,

σ2 = ‖∑α
t=1(b2 − b1)2I‖2 = α(b2 − b1)2. For any X ∈ C, applying Theorem C.1.12

for {Yt}t=1,...,α conditioned on X, we get that, for any ε > 0,

Pr

(
λmax

(
1

α

α∑
t=1

Yt

)
≤ ε
∣∣∣X) > 1− n exp

( −αε2
8(b2 − b1)2

)
for all X ∈ C

By Weyl’s inequality, λmax( 1
α

∑α
t=1 Yt) = λmax( 1

α

∑α
t=1(Zt − Et−1(Zt|X)) ≥ λmax

( 1
α

∑α
t=1 Zt) + λmin( 1

α

∑α
t=1−Et−1(Zt|X)).

Since λmin( 1
α

∑α
t=1−Et−1(Zt|X)) = −λmax( 1

α

∑α
t=1 Et−1(Zt|X)) ≥ −b4, thus λmax

( 1
α

∑α
t=1 Yt) ≥ λmax( 1

α

∑α
t=1 Zt)− b4. Therefore,

Pr

(
λmax

(
1

α

α∑
t=1

Zt

)
≤ b4 + ε

∣∣∣X) > 1− n exp

( −αε2
8(b2 − b1)2

)
for all X ∈ C
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2. Now let Yt = Et−1(Zt|X)−Zt. As before, Et−1(Yt|X) = 0 and conditioned on any

X ∈ C, P(Y2
t � (b2 − b1)2I|X) = 1. As before, applying Theorem C.1.12, we get

that for any ε > 0,

Pr

(
λmax

(
1

α

α∑
t=1

Yt

)
≤ ε
∣∣∣X) > 1− n exp

( −αε2
8(b2 − b1)2

)
for all X ∈ C

By Weyl’s inequality, λmax( 1
α

∑α
t=1 Yt) = λmax( 1

α

∑α
t=1(Et−1(Zt|X) − Zt)) ≥ λmin

( 1
α

∑α
t=1 Et−1(Zt|X))+λmax( 1

α

∑α
t=1−Zt) = λmin( 1

α

∑α
t=1 Et−1(Zt|X))−λmin( 1

α

∑α
t=1

Zt) ≥ b3 − λmin( 1
α

∑α
t=1 Zt). Therefore, for any ε > 0,

Pr

(
λmin

(
1

α

α∑
t=1

Zt

)
≥ b3 − ε

∣∣∣X) ≥ 1− n exp

( −αε2
8(b2 − b1)2

)
for all X ∈ C

We can further extend this to the case of a matrix which is not necessarily Hermitian.

Corollary C.1.14 (Matrix Azuma conditioned on another random variable for an arbi-

trary matrix). Consider an α-length adapted sequence {Zt}t=1,2,...,α of random matrices

of size n1 × n2 and a random variable X that we condition on. Assume that, for all

X ∈ C, (i) Pr(‖Zt‖2 ≤ b1|X) = 1 and (ii) ‖ 1
α

∑α
t=1 E[Zt|Z1,Z2, . . . ,Zt−1, X]‖2 ≤ b2.

Then, for all ε > 0,

Pr

(∥∥∥ 1

α

α∑
t=1

Zt

∥∥∥
2
≤ b2 + ε

∣∣∣X) ≥ 1− (n1 + n2) exp

( −αε2
8(2b1)2

)
Proof. At certain places, where the meaning is clear, we use Et−1[Zt|X] to refer to

E[Zt|Z1,Z2, . . . ,Zt−1, X]

Define the dilation of an n1× n2 matrix M as dilation(M) :=

 0 M′

M 0

. Notice that

this is an (n1 + n2)× (n1 + n2) Hermitian matrix [96] . As shown in [96, equation 2.12],

λmax

(
dilation(M)

)
= ‖ dilation(M)‖2 = ‖M‖2 (C.1)
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Thus, the corollary assumptions imply that P(‖ dilation(Zt)‖2 ≤ b1|X) = 1 for all X ∈ C.

By (C.1) and the definition of dilation,

1

α

∑
t

Et−1[dilation(Zt)|X] = dilation

(
1

α

∑
t

Et−1[Zt|X]

)
� b2I

Thus, applying Corollary C.1.13 to the sequence {dilation(Zt)}t=1,...,α, we get that,

Pr

(
λmax

(
1

α

α∑
t=1

dilation(Zt)

)
≤ b2 + ε

∣∣∣X) ≥ 1− (n1 +n2) exp

(−αε2
32b2

1

)
for all X ∈ C

Using (C.1), λmax

(
1
α

∑α
t=1 dilation(Zt)

)
= λmax

(
dilation( 1

α

∑α
t=1 Zt)

)
= ‖ 1

α

∑α
t=1 Zt‖2

gives the final result.

C.2 Proof of Lemma 4.5.20 (Initial Subspace Is Accurately

Recovered)

Proof of Lemma 4.5.20. Define M := 1
ttrain

∑ttrain

t=1 mtmt
′, A := 1

ttrain

∑ttrain

t=1 `t`t
′ and perturb

:= M− A.

Using Theorem C.1.3 (sin theta theorem) followed by Weyl’s inequality for λmax(Λ⊥) =

λmax(M), if λr0(A)− λr0+1(A)− ‖perturb‖ > 0, then

dif(P̂train,Ptrain) ≤ ‖perturb‖2

λr0(A)− λr0+1(A)− ‖perturb‖2

(C.2)

We will use Azuma to lower and upper bound λr0(A), to upper bound λr0+1(A) and to

upper bound ‖perturb‖2. Let

ε =
1

1− b2
0.001rnewζλ

−

To get the first three bounds, we need to bound λmax(A− 1
ttrain

∑ttrain

t=1

∑t
τ=0 b

2(t−τ)Στ ) and

then use Weyl’s inequality. Now A = 1
ttrain

∑ttrain

t=1

∑t
τ=0

∑t
τ̃=0 b

2t−τ−τ̃ντν τ̃ ′. We proceed

as in Section 4.6.1 but with the difference that we include − 1
ttrain

∑ttrain

t=1

∑t
τ=0 b

2(t−τ)Στ

into term21. Another difference is that t0 = 1 and so `t0−1 = 0 (and so term1 = 0 and
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term3 = 0). Thus we get

−3ε ≤ λmax(A− 1

ttrain

ttrain∑
t=1

t∑
τ=0

b2(t−τ)Στ ) ≤ 3ε

with probability 1− 3 · (2n) exp
(
−ttrainε

2(1−b2)2(1−b)2

32(2rγ2)2

)
. Thus, with the above probability,

using Weyl’s inequality and Lemma C.1.9,

λr0(A) ≥ λr0(
1

ttrain

ttrain∑
t=1

t∑
τ=0

b2(t−τ)Στ )− 3ε ≥ 1

1− b2
(1− b2

ttrain(1− b2)
)λ− − 3ε

λr0(A) ≤ λr0(
1

ttrain

ttrain∑
t=1

t∑
τ=0

b2(t−τ)Στ ) + 3ε ≤ 1

1− b2
λ− + 3ε

λr0+1(A) ≤ λr0+1(
1

ttrain

ttrain∑
t=1

t∑
τ=0

b2(t−τ)Στ ) + 3ε = 0 + 3ε

(the above follows because Στ has rank r0 for all t ≤ ttrain). Next consider ‖perturb‖2.

It is easy to see that

‖perturb‖2 ≤ 2‖ 1

ttrain

∑
t

`tw
′
t‖+ ‖ 1

ttrain

∑
t

wtw
′
t‖2

Proceeding as in Section 4.6.2 for the first term and using the deterministic bound of

0.03rnewζλ
− for the second term, we get

‖perturb‖2 ≤ 0.03rnewζλ
− + 2ε

with probability 1 − (2n) exp
(
−ttrainε

2(1−b)2

32·rγ2ε2w

)
. Using the above bounds and Weyl’s in-

equality, we can conclude that

λ̂−train := λr0(M) ≤ λr0(A) + ‖perturb‖2 ≤
1

1− b2
λ− + 0.08rζλ−

λ̂−train := λr0(M) ≥ λr0(A)− ‖perturb‖2 ≥
1

1− b2
(1− b2

ttrain(1− b2)
)λ− − 0.08rζλ−

w.p. at least 1 − 3 · (2n) exp
(
−ttrainε

2(1−b2)2(1−b)2

32(2rγ2)2

)
− (2n) exp

(
−ttrainε

2(1−b)2

32rγ2ε2w

)
≥ 1 − 4 ·

(2n) · exp
(
−ttrainε

2(1−b2)2(1−b)2

32(2rγ2)2

)
≥ 1 − n−10. The last inequality follows because ttrain ≥

128(rγ2)2

(1−b)2(0.001rnewζλ−)2 (11 log n+ log 8).

Thus, using the fact that 1/ttrain < (rζ)2, (1 − b2

ttrain(1−b2)
) ≥ (1 − (rζ)2b2

(1−b2)
) and so we

get: with probability at least 1− n−10,
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a) λ̂−train ≤ 1
1−b2λ

− + 0.08rζλ− < 1.2 λ−

1−b2

b) λ̂−train ≥ 1
1−b2 (1− (rζ)2b2

(1−b2)
)λ− − 0.08rζλ− ≥ 0.8 λ−

1−b2

c) and

dif(P̂train,Ptrain) ≤ 0.03rnewζλ
− + 2ε

1
1−b2 (1− b2

ttrain(1−b2)
)λ− − 0.08rζλ−

≤ 0.031rnewζ ≤ r0ζ

C.3 Proof of Lemma 4.5.21 (Bounds On ζ+
j,new,k And ζ̃+

j,k)

Proof of Lemma 4.5.21. Proof of item 1 of the lemma: This follows directly from the

bounds for bA, bA,⊥, bH,k in Fact 4.5.37, and by using Lemma 4.5.20.

Proof of item 2 of the lemma: Recall that ζ+
j,new,k :=

bH,k
bA − bA,⊥ − bH,k

with the terms

on the RHS defined in Lemmas 4.5.34, 4.5.35, 4.5.36. The proof approach is similar

to that of [44, Lemma 6.1] and almost exactly the same as that of [85, Lemma 6.14].

The proof is as follows. With the bound in Fact 4.5.37, and since ζ+
new,k is an increasing

function of bA,⊥ and bH,k, and a decreasing function of bA, we have

ζ+
new,1 ≤

0.156 + 0.1rnewζ

0.9999− 0.005rnewζ − (0.156 + 0.12rnewζ)
< 0.19 because rnewζ ≤ 10−4.

For k ≥ 2, we have

ζ+
new,k ≤

0.073ζ+
new,k−1 + 0.1rnewζ

0.9999− 0.005rnewζ − (0.073ζ+
new,k−1 + 0.12rnewζ)

Clearly ζ+
new,k is an increasing function of ζ+

new,k−1. Also ζ+
j,new,1 ≤ 0.19 ≤ ζ+

j,new,0 = 1.

Thus, one can use induction to show that ζ+
j,new,k ≤ ζ+

j,new,k−1 ≤ 0.19. Using the bound

rnewζ ≤ 10−4, we can get ζ+
new,k ≤ 0.1ζ+

new,k−1 + 0.15rnewζ.

Proof of item 3 of the lemma: Recall that

ζ̃+
k :=

bH̃,k
bÃ,k − bÃ,k,⊥ − bH̃,k

.
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Substituting in the bounds for bH̃,k, bÃ,k, and bÃ,k,⊥ in Fact 4.5.42 gives

ζ̃+
k ≤

0.072(r + rnew)ζ + 0.19rnewζ

0.9999− (0.2 + 0.265rnewζ + 0.072(r + rnew)ζ)
≤ 0.09(r + rnew)ζ + 0.119rnewζ

< 0.15(r + rnew)ζ

where we assume rnew < r to get the last inequality.

Using the theorem’s assumption rj,k := |Gj,k| ≥ 0.15(r + rnew), the claim follows.

C.4 Proof of Lemma 4.5.25 (Compressed Sensing Lemma)

This proof’s approach is similar to that of [44, Lemma 6.4]. The proof uses the

denseness assumption and subspace error bounds ζj,∗ ≤ ζ+
j,∗ and ζj,new,k−1 ≤ ζ+

j,new,k−1,

that hold when Xûj+k−1 ∈ Γ
ûj
j,k−1 for ûj = uj or ûj = uj + 1, to obtain bounds on

the restricted isometry constant (RIC) of the sparse recovery matrix Φt and the sparse

recovery error ‖bt‖2. Applying the noisy compressed sensing (CS) result from [12] and

the assumed bounds on ζ and γ, the lemma follows.

Lemma C.4.1 (Bounding the RIC of Φt [44, Lemma 6.6], [85]). Recall that ζj,∗ :=

‖(I− P̂(j),∗P̂(j),∗′)P(j),∗‖2.

1. Suppose that a basis matrix P can be split as P = [P1 P2] where P1 and P2 are

also basis matrices. Then κ2
s(P) = maxT :|T |≤s ‖IT ′P‖2

2 ≤ κ2
s(P1) + κ2

s(P2).

2. κ2
s(P̂(j),∗) ≤ (κs,∗)2 + 2ζ∗ for all j

3. κs(P̂(j),new,k) ≤ κs,new + ζj,new,k + ζj,∗ for all j and k.

4. For t ∈ [(uj−1 +K)α + 1, (ûj + 1)α), δs(Φt) = κ2
s(P̂(j),∗) ≤ (κs,∗)2 + 2ζj,∗.

5. For k = 1, . . . , K−1, for t ∈ [(ûj+k)α+1, (ûj+k+1)α] δs(Φt) = κ2
s([P̂(j),∗ P̂(j),new,k]) ≤

κ2
s(P̂(j),∗) + κ2

s(P̂(j),new,k) ≤ (κs,∗)2 + 2ζj,∗ + (κs,new + ζj,new,k + ζj,∗)2.

Corollary C.4.2.
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1. Conditioned on Γj−1,end, for t ∈ [tj, (ûj +1)α], δs(Φt) ≤ δ2s(Φt) ≤ (κ2s,∗)2 +2ζ+
j,∗ <

0.1 < 0.1479, and ‖[(Φt)Tt
′(Φt)Tt ]

−1‖2 ≤ 1
1−δs(Φt)

< 1.2 := φ+.

2. For k = 2, . . . , K and ûj = uj or ûj = uj + 1, conditioned on Γ
ûj
j,k−1, for t ∈

[(ûj + k − 1)α + 1, (ûj + k)α], δs(Φt) ≤ δ2s(Φt) ≤ (κ2s,∗)2 + 2ζ+
j,∗ + (κ2s,new +

ζ+
j,new,k−1 + ζ+

j,∗)
2 < 0.1479, and ‖[(Φt)Tt

′(Φt)Tt ]
−1‖2 ≤ 1

1−δs(Φt)
< 1.2 := φ+.

3. For ûj = uj or ûj = uj + 1, conditioned on Γ
ûj
j,K, for t ∈ [(ûj +K)α + 1, tj+1 − 1],

δs(Φt) ≤ δ2s(Φt) ≤ (κ2s,∗)2 + 2ζ+
j,∗ < 0.1 < 0.1479, and ‖[(Φt)Tt

′(Φt)Tt ]
−1‖2 ≤

1
1−δs(Φt)

< 1.2 := φ+.

Proof. This follows using Lemma C.4.1, the definitions of Γj−1,end and Γ
ûj
j,k, and Fact

4.5.24.

Proof of Lemma 4.5.25. We will prove claim 2). The others are done in the same way.

By Fact 4.5.24, Γ
ûj
j,k−1 implies that ζj,∗ ≤ ζ+

j,∗ and ζj,new,k−1 ≤ ζ+
j,new,k−1.

a) For t ∈ [(ûj + k − 1)α + 1, (ûj + k)α], bt := (I − P̂t−1P̂t−1
′)(`t + wt). Thus, using

Fact 4.5.26,

‖bt‖2 ≤ ξcor = ξ

b) By Corollary C.4.2, δ2s(Φt) < 0.15 <
√

2 − 1. Given |Tt| ≤ s, ‖bt‖2 ≤ ξ, by [12,

Theorem 1.1], the CS error satisfies

‖x̂t,cs − xt‖2 ≤
4
√

1 + δ2s(Φt)

1− (
√

2 + 1)δ2s(Φt)
ξ < 7ξ.

c) Using the above, ‖x̂t,cs − xt‖∞ ≤ 7ξ. Since mini∈Tt |(xt)i| ≥ xmin and (xt)T ct = 0,

mini∈Tt |(x̂t,cs)i| ≥ xmin−7ξ and maxi∈T̄t |(x̂t,cs)i| ≤ 7ξ. If ω ≤ xmin−7ξ, then T̂t ⊇ Tt.

On the other hand, if ω ≥ 7ξ, then T̂t ⊆ Tt. Since ω satisfies 7ξ ≤ ω ≤ xmin − 7ξ, the

support of xt is exactly recovered, i.e. T̂t = Tt.
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d) Given T̂t = Tt, the least squares estimate of xt satisfies (x̂t)Tt = [(Φt)Tt ]
†yt =

[(Φt)Tt ]
†(Φtxt + Φt`t + Φtwt) and (x̂t)T̄t = 0. Also, (Φt)Tt

′Φt = ITt
′Φt (this fol-

lows since (Φt)Tt = ΦtITt and Φt
′Φt = Φt). Using this, the error et := x̂t − xt

satisfies (4.11).

e) Using Fact 4.5.26 we get the bound on ‖et‖2.

C.5 Proof of Lemmas 4.5.27, 4.5.28, 4.5.29

Proof of Lemma 4.5.27. This proof is similar to that of Lemma 6.16 of [85].

Notice that Pr(NODETS
ûj
j | Γ̃

ûj
j,ϑ) = Pr

(
λmax

(
1
α
DuDu′

)
< thresh for all u ∈ [ûj +

K + (ϑ+ 1) + 1, uj+1 − 1] | Γ̃
ûj
j,ϑ

)
for ûj = uj or ûj = uj + 1.

Recall that Γj,end :=
(

Γ̃
uj
j,ϑ ∩ NODETS

uj
j

)
∪
(

Γ̃
uj+1
j,ϑ ∩ NODETS

uj+1
j

)
. Recall from

Fact 4.5.24 that Γj,end implies that dif(P̂(j),∗,P(j),∗) ≤ rζ.

Also, for u ∈ [ûj +K + (ϑ+ 1) + 1, uj+1− 1], P̂uα−1,∗ = P̂(j+1),∗ and for all t ∈ Ju for

these u’s, νt = P(j)at = P(j+1),∗at.

Using Lemma 4.5.25, under the given conditioning, ‖et‖2 ≤ φ+

1−b(2ζ
+
j,∗
√
rγ + 2εw) for

times t ∈ Ju for all these u’s. Therefore,

λmax

( 1

α
DuDu′

)
= λmax

(
1

α

∑
t∈Ju

(I− P̂uα−1,∗P̂uα−1,∗
′)ˆ̀tˆ̀t

′(I− P̂uα−1,∗P̂uα−1,∗
′)

)

= λmax

(
1

α

∑
t∈Ju

(I− P̂(j+1),∗P̂(j+1),∗
′)(`t − et)(`t − et)

′(I− P̂(j+1),∗P̂(j+1),∗
′)

)

≤
(2ζ+

j,∗)
2rγ2

(1− b)2
+ 2φ+(2ζ+

j,∗
√
rγ + 2εw)

2ζ+
j,∗
√
rγ

(1− b)2
+

(φ+(2ζ+
j,∗
√
rγ + 2εw))2

(1− b)2

≤ 0.05ζλ−

0.81
+

2.4 · (0.05 +
√

0.006)ζλ−

0.81
+

1.44 · (
√

0.05 +
√

0.03)2ζλ−

0.81

< 0.5λ̂−train = thresh

The first inequality uses the bound on ‖(I − P̂(j+1),∗P̂(j+1),∗′)`t‖2 = ‖Φ(j+1),0`t‖2 from

Fact 4.5.26 and the bound on ‖et‖2 from Lemma 4.5.25. The second inequality uses
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the bound on εw from Model 7 and the Theorem; the bound ζ ≤ 0.05λ−

(r+rnew)3γ2 from the

Theorem and the lower bound on λ̂−train from Lemma 4.5.20.

Proof of Lemma 4.5.28. This proof is similar to that of the corresponding lemma from

[85]. We will prove that Pr
(
DETuj+1 | Xuj

)
> pdet,1 for all Xuj ∈ Γj−1,end. In particular,

this will imply that Pr(DETuj+1 | Xuj) > pdet,1 for all Xuj ∈ Γj−1,end ∩ DETuj and so,

by Lemma C.1.11, we can conclude that Pr(DETuj+1 | Γj−1,end,DETuj) > pdet,1.

The following claim is a direct corollary of Lemmas 4.5.34 and 4.5.36. It follows

exactly as the proof of these lemmas for the k = 1 case but with using u = uj +1 instead

of u = ûj + 1.

Pr
(
λmin

(
Auj+1

)
≥ bA

∣∣ Xuj

)
≥ 1− pA,

Pr
(
‖Huj+1‖2 ≤ bH,1

∣∣ Xuj

)
≥ 1− pH

for all Xuj ∈ Γj−1,end. By Lemma 4.5.21, bA − bH,1 ≥ thresh.

From the algorithm, notice that, Mu = 1
α
DuDu′. Thus,

Pr
(
DETuj+1 | Xuj

)
= Pr

(
λmax(Muj+1) > thresh | Xuj

)
By Weyl’s inequality and the above,

λmax(Muj+1) ≥ λmax(Auj+1)− ‖Huj+1‖2

≥ λmin(Auj+1)− ‖Huj+1‖2

≥ bA − bH,1 ≥ thresh

with probability at least 1− pA − pH = pdet,1, whenever Xuj ∈ Γj−1,end. Thus the result

follows.

Proof of Lemma 4.5.29 (p-PCA lemma). This proof is similar to that of the correspond-

ing lemma from [85]. To prove this lemma we need to show two things. First, condi-

tioned on Γ
ûj
j,k−1, the kth estimate of the number of new directions is correct. That is:

r̂j,new,k = rj,new. Second, we must show ζj,new,k ≤ ζ+
j,new,k, again conditioned on Γ

ûj
j,k−1.
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Notice that r̂j,new,k = rank(P̂(j),new,k). To show that rank(P̂(j),new,k) = rj,new, we need

to show that for u = ûj + k, k = 1, . . . , K, λrj,new
(Mu) > thresh and λrj,new+1(Mu) <

thresh. Observe that, Mu = Au + Hu. By Lemma 4.5.21, Lemmas 4.5.34 and 4.5.35

followed by Lemma C.1.11, λmin(Au) ≥ bA > bA,⊥ ≥ λmax(Au,⊥) with probability at

least 1− pA − pA,⊥ under the given conditioning. Since Au is of size rj,new × rj,new, this

means that λrj,new
(Au) = λmin(Au) and λrj,new+1(Au) = λmax(Au,⊥). Using these facts,

Weyl’s inequality, Lemmas 4.5.34, 4.5.35 and 4.5.36, and the bounds from Lemma 4.5.21,

we can conclude that with probability at least pppca, under the given conditioning,

λrj,new
(Mu) ≥ λrj,new

(Au)− ‖Hu‖2

= λmin(Au)− ‖Hu‖2 ≥ bA − bH,k ≥ thresh

and

λrj,new+1(Mu) ≤ λrj,new+1(Au) + ‖Hu‖2

= λmax(Au,⊥) + ‖Hu‖2 ≤ bA,⊥ + bH,k < thresh

Therefore rank(P̂(j),new,k) = rj,new with probability greater than pppca under the given

conditioning.

To show that ζj,new,k ≤ ζ+
j,new,k, we use Lemmas 4.5.34, 4.5.35, and 4.5.36. Using

rank(P̂(j),new,k) = rj,new and applying Lemma 4.5.33 with these bounds; using λ−new ≥ λ−;

and finally using Lemma C.1.11 gives the desired result.

C.6 Proof of Theorem 4.2.3

The proof follows with the following re-definitions. Redefine Γj,end as

Γj,end :=
(

Γ
uj
j,K ∩ NODETS

uj
j

)
∪
(

Γ
uj+1
j,K ∩ NODETS

uj+1
j

)
.

We get Corollary 4.5.32 then by just combining Lemmas 4.5.27, 4.5.28, 4.5.29. The

theorem follows using the lower bound on α, using Fact 4.5.24 and Lemma 4.5.25.
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The proof of the Lemmas 4.5.27, 4.5.28, 4.5.29 follows using the following redefini-

tions. Re-define

1. P̂(j+1),∗ := P̂t̂j+Kα
. Thus, given all subspace change times are correctly detected,

P̂(j+1),∗ = [P̂(j),∗, P̂(j),new,K ]. Thus, Γaj,end implies ζj+1,∗ ≤ ζj,∗ + ζj,new,K .

2. ζ+
j,∗ := (r0 + (j−1)rnew)ζ and ζ+

j,add := (r0 + jrnew)ζ. Thus, ζj+1,∗ ≤ ζj,∗+ ζj,new,K ≤

ζ+
j+1,∗.
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